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DISCLAIMER

The information in, and/or ESAP software associated with this document has
been funded and developed by the United States Department of Agriculture,
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approved for publication as an internal U. S. Salinity Laboratory research report. The
ESAP software associated with this document is to be considered public domain
software, and as such may be used and copied free of charge.

Although the authors of this software have endeavored to produce accurate
and error free program code, this software (including instructions for its use) is
provided “as is” without warranty, expressed or implied. Furthermore, neither the
authors nor the United States Department of Agriculture warrant, guarantee, or make
any representations regarding the use, or the results of the use of, or instructions for
use of this software or manual in terms of applicability, reliability, accuracy, or
correctness. The use and application of this software and manual is the sole
responsibility of the user.

The mention of any trade names or commercial products is for the convenience
of the user and does not imply any particular endorsement by the United States
Department of Agriculture or its agents. The Geonics EM-38 Meter ® is a registered
trademark of Geonics Limited.



TECHNICAL ABSTRACT

Lesch, S. M., J. D. Rhoades, D. J. Strauss, K. Lin, and M. A. A. Co. 1995. The
ESAP User Manual and Tutorial Guide, Version 1 .O. Research Report No.
138, U. S. Salinity Laboratory, United States Department of Agriculture, ARS,
Riverside, California.

In this report we describe and document the ESAP software package; a system
of integrated, user-friendly programs designed to model and predict field scale spatial
soil salinity patterns from electromagnetic induction (EM) survey readings. The ESAP
software package consists of four programs which can perform the following
functions; (1) analyze and validate EM signal data, (2) identify the locations of a
minimal subset of EM survey sites for soil salinity sampling, (3) transform the acquired
EM signal readings into predicted salinity data throughout the entire survey area using
the sample soil salinity data in conjunction with spatially based statistical modeling
techniques, and (4) generate report quality maps of the predicted spatial salinity
pattern, by depth, for the survey area. The use and application of each program is
discussed in detail. Multiple tutorial examples are included throughout this report in
order to demonstrate both data input preparation and the interpretation of output file
results.
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1 .0 INTRODUCTION

1.1  General EM/Salinity Modeling and Assessment Techniques

Accurate soil salinity assessment is needed for the design of efficient
agricultural management practices and irrigation water allocation strategies.
Fortunately, the ability to diagnose and monitor field scale salinity conditions has been
significantly improved through the use of electromagnetic induction (EM) survey
instruments. Within the last 15 years, the adaptation of EM sensors for soil electrical
conductivity measurement has greatly increased both the speed and reliability of
salinity reconnaissance survey work.

The efficient use of EM signal information requires the conversion of apparent
soil conductivity (EC,) into soil salinity (EC,). A significant amount of research in
recent years has been directed towards developing efficient conversion techniques
(Williams and Baker, 1982; McNeill, 1986; McKenzie et. al.,, 1989; Rhoades and
Corwin, 1990; Rhoades et. al., 1990; Rhoades, 1992; Slavich, 1990; Cook and
Walker, 1992; Diaz and Herrero, 1992; Yates et. al.,, 1993, Lesch et. al.,, 1992,
1995a,b). These conversion techniques can generally be classified into one of two
methodological approaches; (1) deterministic, and (2) stochastic. In the deterministic
approach, either theoretically or empirically determined models are used to convert
EC, into EC,. Deterministic models are *“static”; i.e., all model parameters are
considered known and no soil salinity data needs to be collected during the survey.
However, these models typically require knowledge of additional soil properties (e.g.,
soil moisture, texture, temperature, etc.). In the stochastic approach, statistical
modeling techniques such as spatial regression or cokriging are used to directly
predict the soil EC, from EC, survey data. In this latter approach, the models are
“dynamic”; i.e., the model parameters are estimated using of sample salinity data
collected during the survey.

There are both advantages and disadvantages to using a stochastic as opposed
to deterministic modeling approach. For example, stochastic models are usually much
more accurate than deterministic models, since they are explicitly “calibrated” to the
specific field being surveyed. They also typically require no knowledge of additional,
secondary soil properties (although such information can sometimes be either
implicitly or explicitly included into the model, if necessary). However, because
stochastic models are dynamic, soil samples must be acquired during each survey
expedition. Additionally, these models also tend to be both time and location
dependent.

In Lesch et. al.,, 1995a,b, a comprehensive methodology was introduced for
carrying out a field scale salinity survey using a stochastic/dynamic modeling
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approach. This methodology centered around the use of spatial regression models
for predicting soil salinity from EC, survey data. These models were shown to have
a number of important advantages over other stochastic/dynamic modeling
approaches, including (1) they facilitated the use of rapid, mobile EM surveying
techniques, (2) they could be estimated using a very limited number of soil samples,
(3) they could make both point and conditional probability estimates, (4) they could
be used to test for changes in the geometric mean field salinity level over time, and
(5) they were shown to be theoretically equivalent to cokriging models, provided the
regression model residuals are spatially independent.

This manual describes and documents a series of site selection and salinity
modeling software programs developed from the above mentioned methodology. It
is designed to be used both as a software reference text and tutorial guide. A brief
introduction to the spatial regression modeling approach is given in section 1.2.
However, this manual does not represent a theoretical documentation of spatial
regression modeling techniques. The theoretical details behind this approach can be
found in Lesch, et. al., 1995a,b.

1.2 Spatial Regression Modeling Techniques

The spatial regression models discussed throughout this manual can all be
written using the following multiple linear regression (MLR) notation:

Uij = bo; + b-“-W-“ + ijWZi + ...+ bkjWki + E‘) (1_1)
In equation 1 .1 , u; represents the Ln (natural log) transformed soil salinity level within
the jth depth of the ith sample site, fori=7,.... nandj=7,....c. Additionally,

w,; through wy; represent either log transformed and decorrelated EM signal readings
or the spatial (x,y) location coordinates associated with the ith survey site, and by,
through by; represent the empirical model parameters (which must be estimated from
the observed salinity data). The errors, §;, are assumed to be normally distributed
with constant variance and independent from site to site, but possibly correlated
between different sampling depths within the same site.

Equation 1 .1 is based on a number of implicit assumptions concerning the
relationship between soil salinity and apparent soil conductivity, three of which
deserve special attention. The first assumption is that the relationship between
salinity and conductivity is approximately linear on the Ln scale. It has been found
in practice that as the soil salinity exceeds 1 .0 dS/m, the relationship between salinity
and electrical conductivity begins to become increasingly nonlinear. By 10 dS/m, the
linear relationship between salinity and conductivity breaks down completely in most
commercial EM instruments, including the Geonics EM-38 meter (McNeill, 1980).
Since most surveys are performed on fields already suffering some degree of
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salination, the nonlinearity in the salinity/conductivity relationship must be accounted
for. Also, at higher salinity levels the micro variability of the salt content within the
soil typically increases. Due to these two effects, we recommend applying a Ln
transformation to both the salinity and conductivity data before estimating the
regression model. First, in a strict mathematical sense, a Ln transformation helps
correct for the nonlinearity induced by the quadrature component of the received
magnetic field in a highly conductive environment. Second, from a statistical
perspective, such a transformation also helps to stabilize the residual variance (a
required assumption for the MLR model) and ensures that all predicted salinity levels
will remain positive.

The second assumption in equation 1 1 is that the soil salinity within specific
depth intervals can be estimated by acquiring multiple conductivity readings over the
same site. We have generally found this to be true, provided that at least three
separate readings can be acquired (with uniquely different signal response functions).
The Geonics EM-38 meter can supply two of these readings (a horizontal and vertical
dipole reading). However, the third reading will usually have to come from some
other type of direct contact instrument, such as an insertion four-probe or hand held
wenner array.

Insertion four-probes and small, hand held wenner arrays are both very useful
for measuring the soil conductivity within the first 25 to 50 centimeters of topsoil
(Rhoades, 1992). Figure 1 1 displays the relative signal response functions for the
EM-38 horizontal and vertical dipole readings, and for an insertion four-probe reading
acquired at a 15 centimeter depth. In theory, both EM-38 readings supply a depth
weighted conductivity reading for the entire soil profile. However, this is not the case
for the insertion four-probe or a suitably scaled wenner array. Both the four-probe
and wenner array can be used to isolate and capture near surface conductivity values,
and hence increase the depth specific signal resolution accuracy. This additional
information can be critical if the soil conductivity level increases rapidly with depth,
since the near surface (low conductivity) contribution to both EM-38 readings is often
swamped out in strongly regular profiles (Rhoades et. al., 1991).

The third important assumption in equation 1 .1 is that the regression model
residuals are spatially independent. This assumption must always be verified through
a thorough residual analysis, since spatially autocorrelated residuals can corrupt
ordinary least squares estimation techniques and cause severe model bias. In
practice, the validity of this assumption will depend on when, where, and how you
conduct your EM/salinity survey. There are a number of steps you can take to both
minimize the chances of observing strong spatial autocorrelation in the residuals and
improve the prediction accuracy of the fitted model(s). These steps are discussed in
detail in Section 4. However, the software described in this manual can only detect
spatial autocorrelation; it cannot adjust the fitted regression models to reduce the
prediction bias caused by it. If serious residual spatial autocorrelation is detected,
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you will have to use other types of statistical prediction techniques to compensate
for it. (Some alternative prediction techniques are reviewed in Lesch et. al., 1995a.)

1.3 The ESAP Software Package

The ESAP software package consists of four specialized programs: VALIDATE,
EMCCRSD, EMSMLR, and SALTMAP. The VALIDATE and EMCCRSD programs have
been designed to be used together to transform and decorrelate your EM survey data,
and to select an appropriate subset of survey sites for soil sampling. The EMSMLR
program has been designed to estimate and validate an appropriate spatial regression
model for predicting the Ln soil salinity levels from your transformed and decorrelated
EM survey data. This program can also be used to test for a change in the geometric
mean field salinity level over time, provided additional sample salinity data is acquired
at some point after the initial survey. Finally, the SALTMAP program can be used to
create and print high resolution maps of the spatial salinity distribution throughout
your survey area.

Relative Signal Response by Depth

EM-38 Horizontal (soil surface)

-«—— Insertion Four Probe (15 cm depth)

/ EM-38 Vertical (soil surface)

Relative Signal Response

;;;;; ] ATV

0.0 0.3 0.8 0.9 1.2 15
Depth (meters)

Figure1 1 Relative signal response functions, by depth, for the Geonics EM-38
meter and an insertion four-probe inserted 15 cm into the soil.



1.4 Software Installation Directions

To install the ESAP software package, insert the supplied diskette into your A
drive (or B drive), type a:\install (or b:\install), and follow the screen directions. If you
use the default installation settings, the following subdirectories, programs, and data
files will be installed:

c {root directory} ------- emsurvey ---------- data:  wwd 1 .svy

| wwd 1 .dat

| wwd 1 .new

| wwd 1 .ece

| hs2a.dat

| hs2a.ece

| hs2a.log

| ck44.dat
ck44.ece
az09.dat
az0923.dat
az09.ece
readme.txt

I--- phasel: validate.exe
| emccrsd .exe
|
!
|

--- phase2: emsmir.exe
saltmap.exe

|--- utility: dataload .exe
dataload. hlp
helpfile.txt
wwdl cali.ece
wwd 1 vali.ece

You will not need to modify your autoexec.bat file unless you wish to run the
programs from other than the c:\emsurvey\phasel or \phase2 subdirectories, or if
your computer currently has less than 579K of free conventional memory. (To find
out exactly how much memory your computer currently has, go to the root directory
and type mem. If the largest executable program size is less than 579K, consult with
your computer hardware specialist about how to free up more memory.)
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1.5 Manual Organization & Syntax Style
A. Organization

This manual is divided into 7 sections. Sections 2 and 3 document and
describe the VALIDATE and EMCCRSD programs, respectively. An analysis of a
tutorial EM survey data set is included at the end of each section to help you become
familiar with the operation of each program. Section 4 discusses various ways of
improving both the EM surveying and soil sampling process, specifically with respect
to minimizing sampling variability and maximizing the regression model prediction
accuracy. This section should be read immediately after Section 3, and before
conducting any field survey work. Sections 5 and 6 document and describe the
EMSMLR and SALTMAP programs, respectively. An analysis of a tutorial salinity data
set is again included at the end of each section. After finishing Section 6, you should
be familiar enough with the EMSMLR and SALTMAP programs to advance onto
Section 7. Section 7 leads you through a detailed analysis of three additional tutorial
salinity data sets; in an effort to further refine your modeling and analysis skills.

This manual can be used as a self-tutorial guide. To use it as such, we suggest
that within each section you first read the program documentation, then run the
tutorial example(s), and then read the documentation once again. If you have not had

anv_prior experience or trainina in _multiple linear rearession modelina, you may also
wish to review these technigues before readina this _manual.

The collection of tutorial data sets used in sections 2, 3, 5, and 6 are from a
1993 survey conducted in a 160 acre cotton field located in central California. This
field is located within the boundaries of the Westland Water District, hence all tutorial
data files associated with it have the same four character prefix: WWD1. Full
descriptions of the data sets from each of the four surveys discussed in this manual
are given in Section 1.6.

B. Syntax Style

The following syntax style will be used throughout this manual. All software
programs will be referred to in a capitalized italic font. For example, the emccrsd.exe
fortran program described within this manual will always be referred to as EMCCRSD.
All program input/output files discussed in the text will also be referred to in a
capitalized italic font, and will be displayed using their appropriate three character
DOS extensions; e.g., EMCCRSD.OUT represents the output ASCII text file created
by the EMCCRSD program. Whenever any program screen output is referred to, it
will be displayed in the text using a small italic font. Additionally, any keystroke
commands which must be performed by the user will be shown in small bold font,
and the Enter/Return key will always be abbreviated using the following symbol: [«~].
For example, if you see the following line of text



Please enter the field title: My first Salinity Survey [<]

then you should recognize that program screen output is “Please enter the field title:”
and that your keyboard input is “My first Salinity Survey”, followed by an
Enter/Return keystroke.

At various points throughout this manual you will encounter text preceded by
one of the following two comments: NOTE or WARNI NG, Text associated with a NOTE
comment will typically describe either special program features, helpful programming
tips, or additional software information which you may find useful. Text associated
with a VWARNI NG  comment will always contain critical program information which you
must be aware of when using the software.

1.6 Descriptions of Tutorial Data Sets

EM signal and sample soil salinity data from four different surveys have been
included with the ESAP software package. The data from three of these surveys will
be used in section 7 to help you become more comfortable with the EMSMLR
program. As previously mentioned, the data associated with the Westland Water
District survey is used in sections 2, 3, 5 and 6 as the primary tutorial example.
Some details concerning each survey are given on below.

A. WWD1 Survey

This survey was conducted in the spring of 1993 on a 160 acre cotton field
located within the Westland Water District in central California. EC, data were
acquired at 180 survey sites (approximate 55 meter grid) using the mobile EM, four-
electrode sensing system (Rhoades, 1993). Four EC, readings were taken at each
survey site; two EM-38 readings (horizontal and vertical) and two wenner array
readings (1 .0 m and 2.0 m spans). All survey readings and soil samples were
acquired in the furrows. Soil samples were acquired from 16 calibration and 8
validation sites, at sampling depths of 0.0-0.3, 0.3-0.6, 0.6-0.9, and 0.9-1 .2 meters.
Replicate soil cores were acquired at 5 of the 16 calibration sites.

B. CK44 Survey

This survey was conducted in spring of 1993 on a 36 acre fallow (disked) field
located within the Choachella Valley Water District in southern California. EC, data
were acquired at 139 survey sites (approximate 28 meter grid) using the mobile EM,
four-electrode sensing system. Four EC, readings were taken at each survey site;
two EM-38 readings (horizontal and vertical) and two wenner array readings (1 .O m
and 2.0 m spans). Soil samples were acquired from 16 calibration sites at sampling
depths of 0.0-0.3, 0.3-0.6, 0.6-0.9, and 0.9-1 .2 meters. Replicate soil cores were
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acquired at 4 of the 16 calibration sites.
C. AZ09 Survey

This survey was conducted in spring of 1993 on a 32 acre corn field located
near the Gila Indian Reservation in the state of Arizona. EC, data were acquired at
114 survey sites (approximate 28 meter grid) using the mobile EM, four-electrode
sensing system. Four EC,, readings were taken at each survey site; two EM-38
readings (horizontal and vertical) and two wenner array readings (1 .0 m and 2.0 m
spans). All survey readings and soil samples were acquired in the furrows. Soil
samples were acquired from 17 calibration and 8 validation sites, at sampling depths
of 0.0-0.3, 0.3-0.6, 0.6-0.9, and 0.9-1 .2 meters. Replicate soil cores were acquired
at 5 of the 17 calibration sites. Because of high soil textural variability, the validation
data set was combined with the calibration data set, yielding a total calibration
sample size of 25 sites.

D. HS2A Survey

This survey was conducted in spring of 1989 on a 40 acre cotton field located
near Hanford, California. EC, data were acquired at 206 survey sites (25 meter grid)
using hand held electromagnetic induction meters. Six EC, readings were taken at
each survey site; two EM-38 readings (horizontal and vertical) and four four-probe
readings at a 15 cm depth. At each site, the four four-probe readings were averaged
into a single composite reading. Individual soil samples were acquired at each of the
206 survey sites at a sampling depth of 0.0-0.3 meters. (No replicate soil samples
were acquired at any of the sites.)

The laboratory salinity analysis on the soil samples from all four surveys was
performed using the methods of Rhoades et. al., 1989. The WWD1 and HS2A survey
data sets have been previously discussed in Lesch et. al., 1995a,b.



2.0 VALIDATE PROGRAM DOCUMENTATION

2.1  Program Description

VALIDATE is designed to validate and transform your EM signal data, and
produce an output file suitable for use with the EMCCRSD program. VALIDATE reads
as input an ASCII text file (created by the user) containing EM survey information.
This survey information can be collected at anywhere from 43 to 399 distinct survey
sites within a field. VALIDATE first computes summary statistics on the signal data,
and then allows the user to interactively view four different types of signal data plots.
The plot types which the user may choose from are (a) bivariate scatter plots, (b) Q-Q
Normal probability plots, (c) scaled distance semivariogram plots, and (d) an x/y
location (survey coordinate) plot. Next, the program performs a principal components
analysis on the EM signal data, transforming this data into centered and scaled
principal component (PC) scores. It then returns to the interactive view mode,
allowing the user to use the plots described above to examine the PC score data. At
this point the user should use the bivariate scatter plots (of the PC score data) to
search for outlier signal data.

If outlier PC score data are detected, VALIDATE allows the user the option of
deleting the survey sites associated with these data. If the user chooses to delete
one or more survey sites, the program recomputes a new set of principal component
scores using the remaining EM signal data, and then once again returns to the
interactive view mode. This iterative process continues until either (1) no further
outlier PC score data are detected in the EM signal data set, or (2) the user requests
that no further sites be deleted.

During this process, VALIDATE creates two output ASCII text files:
RA WSTAT. TXT and PCSTA T. TXT. The RA WSTAT. TXT file contains summary
statistics and histogram plots calculated using all the original input EM signal data.
The PCSTAT. TXT file contains statistics concerning the iterative principal component
transformations, as well as log notes which document the removal of any survey
sites.

Once the iterative validation process is completed, VALIDATE performs two
final functions. First, it allows the user to mask one or more of the remaining survey
sites. Masking effectively prohibits a survey site from being selected as a calibration
(sample) site, without deleting it from the data set. Second, it creates a 3rd output
file, EMCCRSD.IN. This file contains the final survey location and PC score data
information for use in the EMCCRSD program.
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A flowchart of the program computations performed by VALIDATE is shown
in Figure 2.1.

2.2 Input/Output File Description

To function properly, VALIDATE must read as input an ASCIl text file
containing EM survey information. This file must be created by the user before
initiating the program. Additionally, the data in this input file must have the following
column structure:

[A]siteID [2] x [3]y [4-81EM-38, wenner and/or four-probe data

The site ID column (column 1) must contain whole numbers and no two site ID
numbers can be the same. Although it is not mandatory, it is a good idea to make
the site ID numbers sequential; i.e., 1, 2,.... N. The x and y coordinates (columns
2 and 3) can assume any real, floating point values, however, we recommend using
a scaled coordinate system. For example, if the coordinates are measured in meters,
then dividing by 100 or 1000 will help prevent screen and output file format
problems. All EM signal data should be placed into columns 4 through 8. There must
be no less than two and no more than five columns of EM signal data. Typically,
columns 4 and 5 will contain the EM-38 vertical and horizontal readings; however,
any valid EM signal data may be placed into these columns.

There is no specific data format structure (the data is read in free-format
mode); however, the above ordering of the columns must be maintained for
VALIDATE to function properly. Additionally, you can have no less than 43, and no
more than 399 distinct survey sites within your EM survey input file and no row can
contain missing EM data. Any survey site missing one or more EM signal levels must
be removed (deleted) from the input data file before initiating the VALIDATE program.

The files RA WSTAT. TXT, PCSTAT. TXT, and EMCCRSD.IN are automatically
created by the VALIDATE program during execution. Upon completion of the
VALIDATE program, RA WSTAT. TXT and PCSTAT. TXT can each be printed using the
standard DOS print command. The EMCCRSD.IN file should not be edited in any
manner, since any changes will effect the execution of the EMCCRSD program.

The first text file, RA WSTAT. TXT, contains summary statistics and histograms
computed from the input EM signal data. Note that the EM signal statistics and
histogram plots in RA WSTAT. TXT will always be based on the natural log
transformed signal data values. The second text file, PCSTAT. TXT, lists the iterative
principal component transformation statistics (eigenvalues, eigenvectors, etc.) and
also documents which survey sites get deleted or masked during the validation
analysis. Example output from these two text files will be shown in Section 2.4.
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VALIDATE.EXE FLOWCHART

INPUT FILE: EM survey data

y

signal data statistics P RAWSTAT.TXT

Y

interactive view mode

Y

—® principal components analysis ——————# PCSTAT.TXT

yes interactive view mode
(outlier detection)

+

survey sites deleted (yes/no)

no

Y

site masking

Y

OUTPUT FILE: EMCCRSD.IN

Figure 2.1 Flowchart displaying computations in VAL/DATE program.

2.3 Program Operation

To start the VALIDATE program, move into the c:\emsurvey\phasel
subdirectory and type validate [<] at the DOS prompt. The program will print some
initial header information on the screen, along with the following prompt:
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Do you need help running this program (y/n):

If you’ve forgotten how to use the program, type y [<] to access the help screen,
otherwise type n[<]. The program will then ask you for the following information, (in
the sequential order listed below):

Please enter pa th/fiename:

Please enter field title:

Please enter the # of survey sites (N):

Please enter the # of EM readings per site (m):

You must enter the necessary information after each prompt, and each entry must
satisfy the following restrictions: 1) the field title must be < 40 characters long, 2) the
number of survey sites must be 43 <N < 399, and 3) the number of EM signal
readings must be 2 <m < 5. Entering an incorrect path/filename statement, or
entering anything other than integers at the (N) and (m) prompts will cause the
program to crash.

Next, the program will iteratively ask you specific information about each column of
EM signal data:

Please enter 1st EM signal title:
Ln transform this signal data (y/n):

Please enter mth EM signal title:
Ln transform this signal data (y/n):

At each iteration you will need to supply a EM signal title (8 characters or less) and
a yes/no answer at the Ln transformation prompt.

VARNI NG The VALIDATE, EMCCRSD, EMSMLR, and SALTMAP programs
are designed to work only with natural log transformed EM signal and
soil salinity data. If the EM signal data in vour input file has not alreadv

n Ln transformed, vou m nswer v h Ln transformation

prompt.

After the final Ln transformation prompt, the following message will be printed
to the screen:
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Execution suspended: press Return (Enter) key to view summary statistics

Typing the [<] key will allow you to view all the summary statistics associated with
the Ln transformed EM signal data. The summary statistics written to the screen
include the mean, variance, skewness, minimum, and maximum value associated with
each column of signal data, along with the data correlation matrix. This information
will be followed by another execution suspended message:

Execution suspended: press Return (Enter) key to go in to View Mode
The following statements will then appear on the screen after typing the [«~] key:
You may now interactively view your raw survey data.

Four plot types are available:
a) Bivaria te sca tter plots
b) Q-Q Normal probability plots
c) Scaled distance semivariogram plots
d) X/Y Coordinate Grid

Initializing Q-Q and SemiVariogram Arrays
One moment please.. .

After a few seconds, another prompt will appear:
Plot Type: a) Bivariate b) Q-Q c) SemiVariance d) x/y grid:

To initiate a specific plot, you should type the corresponding letter (*a”, “b”, “c”, or
“d”), followed by the [«] key. You will then be asked to specify which data columns
should be plotted (by selecting the appropriate column numbers). The requested plot
will then appear on the screen, followed by the prompt:

Would you like to view another plot? (y/n):

At this point, you may remain in the interactive view mode (i.e., continue viewing the
various signal data plots) by answering yes, or leave the view mode by answering no.

These initial signal plots are designed to help you visually appraise your survey
data. For example, the bivariate data plots will reveal the degree of correlation
inherent in the Ln transformed EM signal data, while the Q-Q plots can be used to
appraise the assumption of data normality. (Approximate normality should be induced
by the Ln transformation, unless there is a strong trend in the signal data across the
field.) Additionally, the semivariogram plots will reveal the degree of spatial
autocorrelation inherent in the data, and the survey grid can be used to make sure
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that the correct x/y location coordinates have been read into the program.

NOTE: In order to save on time and memory storage, the semivariogram
estimation subroutine uses an approximation algorithm to determine the
intrinsic lag-spacing intervals for the semivariance estimates. This
algorithm assumes that the survey data has been collected on a
rectangular grid, and may therefore produce unreliable results when the
underlying grid pattern is highly irregular.

NOTE: The screen resolution for any given plot produced in the VALIDATE
program is limited to 22 by 79 characters. Hence, there will typically be
a fair amount of symbol overlap in the bivariate scatter and Q-Q
normality plots. Some overlap and/or distortion may also occur in the
xly grid plot when the underlying grid pattern is either highly irregular or
sufficiently dense.

The following message will appear on the screen once you have finished the
1 st interactive view session:

Interactive View session completed.. .
Execution suspended: press Return (Enter) key to compute principal components

The principal component scores of the Ln transformed signal data can now be
computed by typing the [<] key. If your input file contains two columns of EM signal
data (i.e., EM-38 horizontal and vertical readings only), then two principal component
scores will be calculated and retained for further analysis. If your input file contains
three, four, or five columns of EM signal data, then the first three principal component
scores will be retained for further analysis. During this computation process, another
message appears:

Computing principal component scores
Please wait.. .

After a few seconds, this message will be followed by another execution suspended
comment:

Execution suspended: press Return (Enter) key to return to View Mode

Typing the [<] key will return you back into the interactive view mode, where you can
now interactively plot the principal component data.

At this point of the program, you should sequentially create bivariate scatter
plots of each pair of principal component scores. As these scatter plots are being
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created, VALIDATE will check this data for outliers and warn you if any unusual PC
scores are found. If an outlier is discovered, a warning message will appear on the
screen (before the scatter plot appears), identifying the survey site ID number
associated with these data. Note that multiple warning messages will appear if
multiple outliers are discovered. You should manually record each site ID number, so
that these sites can be deleted or masked out later on in the program. (You cannot
delete or mask out any signal data while in the interactive view mode.)

VARNING The user must iteratively create bivariate scatter plots of each pair of
principal component scores in order to search for and identify unusual
signal data. VALIDA JE will only search for outliers immediately before
producing a bivariate scatter plot, and only within the 2 requested
columns of principal component scores. It is therefore imperative that

the user create bivariate scatter plots of everv pair of PC scores.

NOTE: VALIDA JE identifies outlier PC scores by computing a x? statistic
which measures how far each bivariate observation deviates from O.
This statistic, referred to as a “joint PC deviation”, is printed out to
the screen with each warning comment. If the joint PC deviation
exceeds 3.5, the corresponding bivariate observation will be flagged
as an outlier. Bivariate observations with deviations exceeding 4.5
should generally be deleted from the signal data set. Bivariate
observations with deviations between 3.5 and 4.5 are considered
“marginal outliers”, and can either be masked out or deleted.

NOTE: The other three plot types can also be requested at this point in the
program. The Q-Q plots can be used to assess the approximate
normality of the principal component data, and the degree of spatial
autocorrelation can be inferred from the semivariogram plots. The x/y
grid plot can be used to show the locations of deleted survey sites, if the
principal component analysis has been re-computed on a reduce set of
signal data.

Upon completion of the 2nd interactive view session, the following message
will appear if any outlier principal component data has been discovered:

CAUTION! One or more outlier principal component scores have been detected
within the PC data set.

Do you wish to delete any sites? (y/n):
If you answer yes, the next prompt which appears is:

Please specify the survey site # to be deleted:
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You should now enter the site ID number, followed by the [«<] key. The program will
ask you to confirm that the site number has been entered correctly, and then delete
the site. After this step, you will be allowed to delete additional sites, one at a time,
until all outlier data have been removed.

VARN NG A number of error traps and confirmation loops are built into the site
deletion process, to aid the user in avoiding mistakes. However, once
a site is deleted, it cannot be recovered within the program. To
recover an incorrectly deleted site, the user must reinitiate the VALIDATE
program (i.e., start the program over again).
After exiting the site deletion process, the following message will appear:

No additional sites will be deleted.

Computing principal component scores.
Please wait.. .

followed by (a few seconds later)

Execution suspended: press Return (En ter) key to return to View Mode

Typing the [<] will send you back into the interactive view mode, where you can once

again search the new principal component scores (computed on the reduced EM

signal data set) for additional outliers.

NOTE: This iterate process will repeat itself until either (1) no further outliers are
discovered during the interactive view session, or (2) the user elects not

to delete any further signal data from the survey data set.

After all the outlier data has been identified and removed from the survey data
set, the program will print the following message to the screen:

Do you wish to mask any sites? (y/n):

If you answer yes, the next prompt which appears is:

Please specify the survey site # to be masked:

You should now enter the site ID number, followed by the [<] key. As in the site
deletion routine, the program will ask you to confirm that the site number has been

entered correctly, and then mask the site. After this step, you will be allowed to
mask additional sites, one at a time.
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VAR NG The same warning which applies to the site deletion routine applies
here. Once a site is masked, it cannot be un-masked within the
program. To un-mask an incorrectly masked site, the user must
reinitiate the VALIDATE program (i.e., start the program over again).

Upon exiting the site masking routine, the program terminates after printing the
following comments to the screen:

Validation / transformation step completed.
Run EMCCRSD to generate the soil sampling design.

At this point, before initiating the EMCCRSD program, you should print out the
RA WSTA T. TXT and PCSTA T. TXT text files. The PCSTA T. TXT file should be checked
to confirm that the correct number of sites (if any) have been deleted or masked, and
both printouts should be saved for further reference.

2.4 Tutorial Example

You should now try running VALIDATE using the supplied tutorial survey data
set, WWD 1.SVY. The input file attributes are N = 180 and m =4. The sample data
path/filename is “c:\emsurvey\data\wwd 1 .svy” (provided you used this default
subdirectory when installing the ESAP software package). Enter “Westland Field 1”
for the field title, and “EMv”, “EMh”, “WnO01”, and “Wn02” for the 4 EM signal titles.
Be sure to also Ln transform each column of signal data.

After viewing the summary statistics, proceed into the interactive view mode
and try out the four types of screen plots: (a) bivariate scatter plots, (b) Q-Q Normal
probability plots, (c) scaled distance semivariogram plots, and (d) the x/y coordinate
grid plot. Pay particular attention to the following attributes revealed by these plots.
In the bivariate scatter plots: note the high degree of correlation between the various
Ln transformed signal readings, and the 3 unusual (outlier) points in the Wn01/Wn02
scatter plot. In the Q-Q normal probability plots: note that all the Q-Q plots appear
“heavy-tailed”, implying that the log transformed signal data is not Normally
distributed. In the semivariogram plots: note that all semivariograms appear to be
linear, suggesting that there is probably a strong directional trend in the signal data.
Finally, in the x/y grid plot: note that no survey data was acquired at the last site in
row 1 (upper right-hand corner of the screen), or the first site in row 3.

Next, compute the principal components transformation and then return to the
interactive view mode. In the view mode, construct bivariate scatter plots of the
following three pairs of principal component scores: PC1/PC2, PC1/PC3, and
PC2/PC3. Note that two warning statements appear on the screen before the
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PC1/PC3 and PC2/PC3 scatter plots are made. In each case, the warning statements
identify survey sites 69 and 173 as outliers.

Before leaving the view mode, create Q-Q and semivariogram plots of each
principal component. Note that in the semivariogram plots the spatial autocovariance
structure deteriorates in the higher principal components (especially the 3rd PC
score). Note also that the Q-Q plot of the 3rd PC scores clearly reveal two serious
outliers (sites 69 and 173).

Now leave the view mode and answer yes at the site deletion prompt. Delete
sites 69 and 173 from the data set, recompute a new set of principal component
scores, re-enter the view mode, and create a x/y grid plot. Note that sites 69 and
173 are now missing from the survey grid. Next, create a new set of bivariate scatter
plots. Note that one more site now gets identified as a marginal outlier (site 99) in
the PC1/PC3 and PC2/PC3 plots.

Leave the view mode again, but this time answer no at the site deletion
prompt. This will exit you out of the iterative validation/deletion process. Next,
answer yes at the site masking prompt, mask out site 99, and then exit out of the
program by answering no at the “mask another site?” prompt.

Print out the RA WSTAT. TXT and PCSTAT. TXT files and make sure they match
the text file printouts shown in Tables 2.1 and 2.2. Note that histogram plots of the
Ln transformed EM signal data are contained in the RA WSTAT. TXT file, and that
these plots suggest that the Ln transformed signal data is possibly bi-modal. Note
also that the ID numbers of all the deleted and masked sites are listed in the
PCSTAT. TXT file (along with the principal component statistics).

Finally, note that a third file now exists in the c:\emsurvey\phasel
subdirectory, EMCCRSD.IN. This file contains all the necessary input information
needed by the EMCCRSD program.



Table 2.1

EM Signal Data // Summary Survey Statistics

Title: Westland Water District
Total # of survey sites = 180
Total # of EM signals per site = 4
Signal . Type Ln.Trnsfrm
EMv yes
EMh yes
wol yes
wo2 yes
STATISTIC EMv EMh wo1 wo2
mean 0.89724 0.38873 0.69318 1.54614
variance 0.11748 0.13939 0.19607 0.19993
skewneww -0.11456 -0.09595 0.07002 0.09954
minimum 0.21511 -0.32850 -0.22314 0.66320
maximum 1.44456 0.98582 1.59127 2.45453
CORRMATRX EMv EMh wo1 w02
EMv 1.00000 0.99242 0.85730 0.91140
EMh 0.99242 1.00000 0.89970 0.93730
wol 0.85730 0.89970 1.00000 0.96268
wo2 0.91140 0.93730 0.96268 1.00000
Ln-transformed EM Signal Histogram Distributions
EMv EMh wol wo2
+++++++++++++ . A
HHHHHHHHHHHHH ~ HHHHHHHHHHHHH ~ HHHHHHHHHHHHH  HHHHHHHHHHHHH
HHHHHHHHHHHHH HHHHHHHHHHHH HHHHHHHHHHHH HHHHHHHHHHHH
HHHHHHHHHHHH HHHHHHHHHHHH HHHHHHHHHHH HHHHHHHHHHH
HHHHHH HHHHH HHHHHHHHHHHH HHHHHHHHHHH HHHHHHHHHHH
HHHHHH HHHHH HHHHHHH ~ HHHH HHHHHHHHHHH HHHHH HHHHH
HHHHHH HHHHH HHHHHHH ~ HHHH HHHHHHHHHHH HHHH HHHHH
HHHHH HHHH HH H HH HHHH HHHHH  HHHH HHHH HHHHH
H H H HH H HH HH HHH H HH HHHH HHH H
H H HH H H HH HHH H H HH H HHH H
HH H H HH HH HH HH H HH
H H HH HH H HH
H H H H H H
H H H H
H H

I T T T T T T

Example of ASCII text output contained in RAWSTAT. TXT.
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Table 2.2  Example of ASCII text output contained in PCSTA T. TXT.

EM Principal Components Data // Transformation Statistics & Log Sheet

Title: Westland Water District

Total # of survey sites = 180
Total # of EM signals per site = 4
Column 1 Eigenvalues Column 2 = Percent of Trace

Column 3 Cumulative Percent of Trace
1 2 3
1 3.78090 0.94523 0.94523
2 0.18549 0.04637 0.99160
3 0.03017 0.00754 0.99914
4 0.00344 0.00086 1.00000

Principal Axis Matrix: Columns = Eigenvectors, Rows = EM Variables

1 2 3 4
1 0.49755 -0.58057 -0.04294 0.64306
2 0.50654 -0.37998 -0.19807 -0.74820
3 0.49175 0.63948 -0.56923 0.15885
4 0.50403 0.33109 0.79681 -0.03786
Note: deleted site #: 69
Note: deleted site #: 173
Total # of survey sites = 178
Total # of EM signals per site = 4
Column 1 = Eigenvalues Column 2 = Percent of Trace
Column 3 = Cumulative Percent of Trace

1 2 3
1 3.79676 0.94919 0.94919
2 0.18494 0.04624 0.99543
3 0.01503 0.00376 0.99918
4 0.00327 0.00082 1.00000

Principal Axis Matrix: Columns = Eigenvectors, Rows = EM Variables

1 2 3 4
1 0.49664 -0.57937 -0.08498 0.64067
2 0.50591 -0.37377 -0.18591 -0.75484
3 0.49103 0.65724 -0.55433 0.14018
4 0.50625 0.30441 0.80681 -0.01013

Note: masked site #: 99
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3.0 EMCCRSD PROGRAM DOCUMENTATION

3.1  Program Description

EMCCRSD is designed to identify between 15 to 20 sites suitable for soil
sampling, based on your principal component survey data generated by the
VALIDATE program. EMCCRSD can also select additional monitoring sites for
sampling in the future. The observed soil salinity levels at these monitoring sites can
then be compared to the model predicted salinity values, and used to test for changes
in the field median salinity level over time.

EMCCRSD reads as input a text file called EMCCRSD.IN. EMCCRSD uses this
input data to select the locations of the first 14 sample sites automatically, and
prompts the user to select between 1 to 6 additional sites (thereby producing a final
calibration size of 15 to 20 sites). Next, the program selects 8 monitoring/validation
sites, and then asks the user if the locations of these sites should be included on the
sample site location map and crew log-sheet. At this point in the program, the user
can either (1) discard these 8 sites entirely, (2) retain these 8 sites for future sampling
(i.e., monitoring sites), or (3) retain these 8 sites for concurrent sampling (i.e.,
validation sites). The user also has the option of creating a multi-stage sampling plan
(see section 2.5). Finally, EMCCRSD asks the user if they wish to create a spatial
map of the 1st principal component score. If produced, this map can generally be
interpreted as a qualitative first approximation to the bulk-average spatial soil salinity
distribution.

During this process, EMCCRSD creates six output (ASCII) text files:
SITES.TXT, SSS.MAP, CRWSHEET. TXT, ALGNOTES.OUT, EMCCRSD.OIJT and (if
desired) PC 7. MAP. These files contain all the necessary information for implementing
an optimal soil sampling design.

A flowchart of the EMCCRSD program computations is shown in Figure 3.1.

3.2 Input/Output File Description

EMCCRSD has been designed to read the EMCCRSD.IN ASCII text file created
by the VALIDATE program; no other input files need to be accessed during the
programs’ execution. Upon initiation, this program will print the following input file
information to the screen: (1) the field title associated with the input data, (2) the
total number of survey sites, (3) the number of principal component scores, and (4)
the number of masked survey sites. When necessary, this information can be used
to verify that the correct survey data has been read into the program.
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EMCCRSD.EXE FLOWCHART

INPUT FILE: EMCCRSD.IN

Y

initial cal site selection

Y

specify final cal sample size

y

multi-stage survey?

yes

no

EMCCRSD.IN2

\

monitoring site selection SITES.TXT

and assignment
SSS.MAP

CRWSHEET.TXT

es
create PC1 map? y = PC1.MAP

OUTPUT FILE: EMCCRSD.OUT

Figure 3.1 Flowchart displaying computations in EMCCRSD program.
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VARNI NG Do not edit and/or otherwise modify the EMCCRSD.IN input file
in any manner --- modification of this file can corrupt the EMCCRSD
program.

As mentioned in Section 2.1, EMCCRSD produces six output ASCII text files;
all but the ALGNOTES.OUT and EMCCRSD. OUT text files should be printed out after
exiting the program. (You can obtain a printout of the four remaining files using the
standard DOS print command.) The SITES. TXT file contains the theoretical target
design levels and the observed principal component scores for each of the calibration
and monitoring/validation sites, along with the sample site ID numbers and x/y
location coordinates. The SSS.MAP file contains a map of the survey grid and
identifies the locations of all the calibration and monitoring/validation sites, as well as
any masked sites. The CRWSHEET. TXT file lists the calibration sites in sequential
order (by site ID), and can be used as a log-sheet for field notes during soil sampling.
(The 8 monitoring/validation sites will also be listed sequentially in this file, if
requested by the user.) The PC1.MAP file contains a spatial map of the first principal
component score. This file should only be created if a systematic survey grid was
employed to collect the EM survey data. The ALGNOTES.OUT file generates a
summary of the internal computations pertaining to the various iterative site selection
procedures -- hence, it does not typically need to be printed.

The EMCCRSD.OUT text file must always be renamed and/or copied into
another subdirectory once the EMCCRSD program has terminated. This file contains
the final principal component scores and coordinates of all the survey sites; you will
need this information in order to create a valid input file for the EMSMLR program
(see section 5). We recommend moving a renamed version of the EMCCRSD. OUT
text file into the c:\emsurvey\data subdirectory.

VARNING Each time the EMCCRSD program is executed, the EMCCRSD.OUT text
file is overwritten. The name of this file must be changed, and/or this
file must be moved into another subdirectory in order to save the
transformed and decorrelated signal information.

3.3 Program Operation

To start the EMCCRSD program, make sure you are still in the
c:\emsurvey\phasel subdirectory and type emccrsd [<] at the DOS prompt. The
program will print some initial header information to the screen, along with the
following prompt:

Do you need help running this program (y/n):

If you've forgotten how to use the program, type y [«] to access the help screen,
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otherwise type n [«]. The program will then print out the EMCCRSD.IN input file
information described in Section 2.2, followed by:

Execution suspended: press Return (Enter) key to continue

Type the [<] key to initiate the first stage of the iterative site selection process; these
iterations can take anywhere from 3 seconds (on a 586/60 PC) to about 60 seconds
(on a 386/1 6 PC). During this stage, the program will automatically select the first
14 sample site locations, and then print the following statement:

Please enter the # of additional spatial support sites to be included in the sampling
design (1s SSS s 6):

You can now specify the final sample size to be between 15 to 20 by entering the
appropriate number of additional support sites (1 through 6). For example, if you
wish to select a total of 16 sample sites, type 2 [+] at this prompt.

NOTE: You must choose at least 1, and no more than 6 support sites.

After you have specified the number of additional support sites, the program will
initiate the second stage of the site selection process. EMCCRSD will first determine
the locations of the support sites, and then select 8 additional monitoring/validation
sites. The following question will then appear on the screen:

Will this be a multi-stage sampling design (y/n):

Answer no at this prompt (multi-stage sampling techniques will be described in
section 2.5). Next, the following messages will appear:

Note: you have the option of not listing the monitoring sites on the sample site map
or crew log-sheet.

Do you wish to include the monitoring sites? (y/n):

If you do not wish to sample at these 8 sites, type n [«]. If you answer no, then
these sites will not be listed on either the sample site map (SSS.MAP) or crew log-
sheet (CRWSHEET. TXT). If you answer yes, then the locations of these 8 sites will
be shown on the sample site map. Additionally, the following question will appear:

When will samples be collected at the monitoring sites?
a) during calibration sampling (i. e., validation)
b) in the future (i.e., monitoring):
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If you type al+~], these sites will be listed on the crew log-sheet as validation points.
If you type b [~], these sites will be specified on the log-sheet as monitoring points.

NOTE: The EMCCRSD program will assign a “cup code” to every survey site
which is selected as a sample site; these cup codes are printed on the
crew log-sheet next to the sample site ID numbers. All calibration sites
automatically receive cup codes; however, monitoring sites only receive
cup codes if you define these sites to be validation sites. If desired, cup
codes can be used as laboratory identification numbers.

After the sample site map and crew log-sheet are created, EMCCRSD will print
to the screen one final question:

Do you wish to produce a spatial map of the 1st principal component score?
Note: answer yes only if you used a rectangular, systematic survey grid.. .

Create this map ( y/n):

Type y[«] if you wish to produce this map. If you answer yes, then a four level
raster map of the 1st principal component score will be produced and written to the
PC1.MAP text file. Note that this raster map will always appear square, regardless
of the actual field dimensions. Hence, if the ratio of the horizontal to vertical field
boundaries is significantly different from 1, then this map will tend to distort the true
spatial pattern of the principal component score.

NOTE: The spatial estimation technique used to create this map may produce
unreliable results if a highly non-systematic sampling grid is used to
collect the survey data.

Upon completion of the spatial map estimation routine, the program will write
a message to the screen reminding you to print out and/or rename the various output
text files, and then terminate.

3.4 Tutorial Example

Type emccrsd [«] to initiate the EMCCRSD program (as described in the first
paragraph of Section 3.3). Answer no at the help prompt, confirm that the input file
information is correct, and then type the [<] key to begin the calibration site selection
process. Enter 2 [~] at the support site prompt and answer no at the multi-stage
survey prompt. Next, answer yes at the monitoring site inclusion prompt, and type
a [«] to identify these 8 sites as validation points. Finally, type y[<] at the map
prompt to generate a spatial map of the 1st principal component score.
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When the program terminates, print out the SITES. TXT, SSS.MAP,
CRWSHEET.TXT, and PC1.MAP text files; their output should match the text file
output shown in tables 3.1 through 3.4.

After the last text file has been printed, type the following command at the
DOS prompt:

copy emccrsd.out c:\emsurvey\data\wwd1l1 .out

This will copy the EMCCRSD.OUT text file into a text file called WWD1.0OUT (and
place the WWD 1.0UT file into the c:\emsurvey\data subdirectory). In Section 5.4
you will learn how to merge this information with the sample soil salinity information
in order to create a valid input file for the EMSMLR program.

You may now wish to run the EMCCRSD program again and change your
answers at the monitoring site inclusion prompt, to better understand how these
answers effect the SSS. MAP and CRWSHEET. TXT output files.

3.5 Multi-stage Sampling Designs

Occasionally, there may be situations where you wish to acquire more than one
set of monitoring sites. For example, you may wish to collect both calibration and
validation sites within your EM surveyed field, and also select two sets of monitoring
sites to sample at in the future. These types of sampling plans, referred to in this
manual as “multi-stage sampling designs”, can be generated by repeatedly running
the EMCCRSD program on the same survey data set. Multi-stage sampling designs
can be very useful if you need to monitor a field over a long period of time, and/or
need to collect soil samples at multiple points throughout the life of an experiment (in
order to measure the rate of change in the geometric mean field salinity level with
respect to a change in the experimental conditions).

When you answer yes at the multi-stage survey prompt, an output text file
called EMCCRSD.IN2 is created. This file can then be used as a new input file for the
EMCCRSD program. Executing the program again produces a new, second set of
calibration sites (which can be used as either additional validation sites or as future
monitoring sites) and, if requested, a new EMCCRSD.IN2 text file. This process may
be repeated more than once, and hence used to generate multiple sets of monitoring
sites.

In the example which follows, the EMCCRSD program is run three times in
order to generate a sampling design with 20 calibration sites, 8 validation sites, and
2 sets of monitoring sites, with 15 sites in each monitoring set.



Table 3.1

Example of ASCII text output contained in SITES. TXT.

Spatial CCRSD Calibration & Mnitoring Site Infornation

Title: Westland Field 1
Total # of survey sites = 178
Total # of PC scores per depth = 3
Total # of calibration sites = 16
Central Conposite Spatial RSD Calibration Sites
Site
ID X Y PC scores RSD | evels
30 5. 8750 2. 9250 1.46 0.63 1.12 1.13 1.13 1.13
104 2. 8750 0. 7250 -1.04 -0.89 0.88 -1.13 -1.13 1.13
25 6. 3750 0. 7250 -0.89 0.97 -1.03 -1.13 1.13 -1.13
114 2. 8750 6. 2250 1.04 -1.00 -0.84 1.13 -1.13 -1.13
160 0. 8750 2. 9250 -0.99 1.44 1.09 -1.13 1.13 1.13
71 4. 3750 4. 0250 0.95 -0.99 1.00 1.13 -1.13 1.13
80 3. 8750 1. 8250 -1.16 -1.70 -1.23 -1.13 -1.13 -1.13
89 3. 8750 6. 7750 1.00 1.24 -1.40 1.13 1.13 -1.13
170 0. 3750 6. 7750 1.44 -0.12 -0.33 1.96 0.00 0.00
180 0. 3750 1. 2750 -1.49 0.33 0.12 -1.96 0.00 0.00
14 6. 3750 6. 7750 0.20 2.35 -0.37 0.00 1.96 0.00
124 2. 3750 3. 4750 -0.16 -2.08 -0.63 0.00 -1.96 0.00
61 4.8750 5.6750 -0.31 -0.44 1.70 0.00 0.00 1.96
164 0. 8750 5. 1250 0.49 0.10 -2.00 0.00 0.00 -1.96
18 6. 3750 4. 5750 -0.59 0.57 -1.24 spatial support
127 2. 3750 1. 8250 -1.07 -0.83 0.30 spatial support
Monitoring/Validation Sites
Site
ID X Y PC scores RSD | evels
29 5. 8750 2. 3750 1.46 1.01 0.85 1.13 1.13 1.13
100 3. 3750 2. 3750 -0.70 -1.38 0.52 -1.13 -1.13 1.13
159 0. 8750 2. 3750 -1.16 1.42 -1.11 -1.13 1.13 -1.13
117 2. 3750 7.3250 0.85 -1.23 -1.07 1.13 -1.13 -1.13
9 6. 8750 5. 1250 -0.53 1.16 1.24 -1.13 1.13 1.13
97 3. 3750 4. 0250 0.89 -0.73 0.64 1.13 -1.13 1.13
79 3. 8750 1. 2750 -1.42 -0.99 -0.83 -1.13 -1.13 -1.13
36 5. 8750 6. 2250 0.88 1.07 -0.88 1.13 1.13 -1.13

27
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Table 3.2 Example of ASCII text output contained in SSS. MAP.

Soil Sample Site X/Y Location Grid
Title: Westland Field 1

survey site § = calibration site
+ = masked survey site o monitoring/validation site

S . . . . . . S . . .
. . . . . $ . . . . .
. . . . . . . . . S .

$ . . . . . . . .
. . . . . . o] . S . .
. . . . $ . . . . . .
. ] . . . . + . . . .
. o . . . . o . . . .
. . . . $ . . S . . .




Table 3.3  Example of ASCII text output contained in CRWSHEET. TXT.

Sampling Crew Log-Sheet: Ordered soil sample sites
Title: Westland Field 1
Sampling Date: - - -

9 cup #: 1 --> Validation Site Notes:
14 cup #: 2 Calibration Site Notes:
18 cup #: 3 Calibration Site Notes:
25 cup #: 4 Calibration Site Notes:
29 cup #: 5 --> Validation Site Notes:
30 Cup #: 6 Calibration Site Notes:
36 cup #: 7 --> Validation Site Notes:
61 Cup #: 8 Calibration Site Notes:
71 cup #: 9 Calibration Site Notes:
79 cup #: 10 --> Validation Site Notes:
80 cup #: 11 Calibration Site Notes:
89 cup #: 12 Calibration Site Notes:
97 cup #: 13 --> Validation Site Notes:

100 cup #: 14 --> Validation Site Notes:
104 cup #: 15 Calibration Site Notes:
114 cup #: 16 Calibration Site Notes:
117 cup #: 17 --> Validation Site Notes:
124 Cup #: 18 Calibration Site Notes:
127 cup #: 19 Calibration Site Notes:
159 cup #: 20 --> Validation Site Notes:
160 cup #: 21 Calibration Site Notes:
164 cup #: 22 Calibration Site Notes:
170 Cup #: 23 Calibration Site Notes:
180 cup #: 24 Calibration Site Notes:
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Table 3.4 Example of ASCII text file map contained in PC71.MAP.

Relative 1lst PC Spatial Distribution (assuming Normality)
Title: Westland Field 1

( ] 0% < Quantile < 25% pcl < -0.67
[---] 25% < Quantile < 50% -0.67 < pcl < 0.00
[ooo] 50% < Quantile < 75% 0.00 < pcl < 0.67
[###) 75% < Quantile < 100% pcl > 0.67

FHEFEEERERHRFREE R R E R AR AR FEE R # 1 E###### #ooooo##########000000000000
R EE RO #E #F##E 1 E##E### ¥4 ##1######## 00000 #########0000000O0C0O00CO
FHERF R E LB EERFF R R #######ooooo##########0000000. .000
FHRER RO R #F R #####oooo# #############c000#######000000. .. .00
####R# R ook # #############oooo###############0000#####000000..... oo
#FHE# RO R # ## # 4R ######ooof ##############00000#####0000000......
FHEFL R EF R R R R ook # #########oo0000#######00000000000. . .
FHER# SRR AR AR # oo #########0000000####0##0000.000000...

REER AR AR AR R F A # A ## #######0000000000###0000000. .. .. 00....
FEREHREREFFHCOOREH S E#HHHFH#H############0000000000000000000. ¢ s e sssoacss
FHER R ERFRFCOCORR##### ###R###############0..000..00000000000.. ceoeesacs
ooo##o### #0000 ##### ### ## ##### #########000000000000000000. s et eveeeess
0000000000000000# ###E# ### ################000000.00000000. ¢ e eeeeeereennn
0000000000000 . COEF#### ## ## ################00000. .000.000..... (Yo JP
00. . .000000000000####0oFCOR ¥ # ## ############0000000000000. ..t ceeeesnncens
.......... 0000000###0000000000# #### # #########00000000000. .. cceseccevsess
ces eeesees oooooo###oooooocoocoot #############00000000000. ...vann. cees
............ 000000000000000000C0#EA#############H#0000000. .. ceeveesesnacss
............ 000000. . . 0C0000CC#E## ## ## ## ¥ #########00O. ... ccivee oo
................. .00. .coo#foo############t#####c0...0...... .en
ce  eesesses sesssescsccsces ocooooocooococo#t#t#{t#######o00000..... .eo
e eeeeee eecseesescsanes oooooocooccocoff##{############00000. .. .ee
ee eeceesecccecens ooooooocooco#f#ook############00000. . e
................... ooooooco#ocoofooo########0c000. . .ee
.................... oooooooooooococoo########oo000. . .o
.................. 0000000000 . . co########00000. . .es
..................... 00000. . .coofoo####00000. . e
............................. 000000####00000. ... ....
ce  teeeecsccccecsreseans oco#ooo###ooco#00.......
.................... 000000###00000. . ..o
......... ooo###00000. . .o

........ .oo###0c0000. .

......... 000#000000. .
...... 0000000. . ... .
...... 00000. ... .o
...... O000.ceasss .o
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Step 1.

Initiate the EMCCRSD program. Enter 6 [<] at the support site prompt and
answer yes at the multi-stage prompt. The following question will appear:

Do you wish to mask out the eight 1st stage monitoring sites? (y/n):

Answer yes. Next, answer yes at the monitoring site inclusion prompt, type a [<] to
identify these 8 sites as validation points, and answer no at the map prompt to
terminate the program. At the DOS prompt, type the following file copy commands:

copy sites.txt sites.1 [«]

copy sss.map sss.1 [<]

copy crwsheet.txt crwsheet. 1 [~]
copy emccrsd .in emccrsd. 1 [«]
copy emccrsd.in2 emccrsd.in [+]

Step 2.

Initiate the EMCCRSD program a second time (note that the program now
detects 29 masked survey sites). Enter 1 [«] at the support site prompt and answer
yes at the multi-stage prompt. The following question will again be printed to the

screen:
Doyou wish to mask out the eight 1st stage monitoring sites? (y/n):

Answer no. Also answer no at the monitoring site inclusion prompt and spatial map
prompt. At the DOS prompt, type the following second set of file copy commands:

copy sites.txt sites.2 [«]

copy sss.map sss.2[+]

copy crwsheet.txt crwsheet.2 [«]
copy emccrsd.in emccrsd.2 [«]
copy emccrsd.in2 emccrsd.in [«]

Step 3.

Initiate the EMCCRSD program a third and final time. (The program will now
report 44 masked survey sites.) Enter 1 [<] at the support site prompt and answer
no at all remaining program prompts. At the DOS prompt, use the following file print
commands to view the site information and final sampling maps generated by this

three-stage sampling design:
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print sites.1 [«] {to see the information pertaining to the 20 1st stage
print sss.1 [«] calibration and 8 1st stage validation sites}
print crwsheet. 1 [<]

print sites.2 [<] {to see the information pertaining to the 15 2nd stage
print sss.2 [«] monitoring sites}
print crwsheet.2 [<]

print sites.txt [«] {to see the information pertaining to the 15 3rd stage
print sss.txt [«] monitoring sites}
print crwsheet.txt [+]

If you follow the instructions given in the example above, you should find that the site
numbers listed in CRWSHEET. 7, CRWSHEET.2, and CRWSHEET. 7TXT match the

numbers shown below:

CR WSHEET. 7 :

calibration sites:
{14,18,22,25,30,53,61,71,80,89,104,111,114,124,127,141,160,164,170,180}
validation sites: {9,29,36,79,97,100,117,159}

CRWSHEET.2:
calibration sites [to be used as 2nd stage monitoring sites]:
{3,15,20,44,52,83,88,95,107,128,140,148,152,165,181}

CRWSHEET. TXT:
calibration sites [to be used as 3rd stage monitoring sites]:
{2,11,19,48,59,65,74,106,112,116,122,144,153,172,178}
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4.0 EM SURVEYING AND SOIL SAMPLING CONSIDERATIONS

4.1  Spatial Variability

The VALIDATE and EMCCRSD programs are designed to optimize the choice
of sampling locations with respect to describing the spatial variability present within
your survey area. These soil salinity data are then used to estimate a regression
equation which, in turn, can be used to predict the soil salinity levels at all of the
remaining non-sampled locations. The sampling design used in the EMCCRSD
program actually exploits the spatial soil salinity variability present in the field. This
is done by deterministically selecting a sample data set which will typically be more
appropriate (for estimating the regression equation) than one would expect to observe
under simple random sampling strategies.

However, there are a number of additional factors that can cause both soil
salinity and EM signal variation in irrigated farmland, and which must be accounted
for to implement an efficient soil sampling plan. Furthermore, unlike spatial variation
(which can, at least in part, be considered stochastic), many of these additional
sources of variability are typically induced by management practices. In this section
we will summarize some of the additional deterministic and stochastic mechanisms
which create salinity and EM signal variations in irrigated farmland, and discuss
appropriate surveying and sampling methods to minimize their effects.

4.2 EC, Variation Induced by Sampling Depth

Probably the most common source of EC, variation comes from fluctuation in
salinity levels with respect to sampling depth. Soil salinity levels can change quite
rapidly with depth; it is not unusual to see the relative salinity level increase an order
of magnitude within the first 1 .O meter of soil. Maintaining an accurate and
consistent sampling depth throughout the survey area is therefore critical, and
sampling practices which minimize depth variations must be rigorously followed.

It should be pointed out that many EM instruments acquire a depth weighted
signal reading throughout the soil profile. The Geonics EM-38 meter is one example
of such an instrument; both the horizontal and vertical EM-38 readings represent
depth weighted average conductivity throughout the first 1 .O to 2.0 meters of soil.
Without prior knowledge of the salinity profile shape, it can be difficult to infer the
exact depth of maximum salinity concentration. For this reason we recommend that
soil cores be acquired to a depth of at least 1 .O meter at each sample site. If
resources permit, each core can be sliced into subsamples, thereby facilitating the
estimation of prediction functions (regression models) for multiple sample depths.
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One sampling strategy we commonly use is to acquire soil samples at each
sample site in 30 centimeter increments, typically down to a depth of either 1.2 or
1.5 meters. When sampling by hand (i.e., using a hand auger), each soil sample can
be removed individually. If a drilling rig is available, then the entire core is usually
bored at one time and then split into subsamples after being brought to the surface.
However, regardless of the actual sampling techniques, the surveying crew should
always attempt to absolutely minimize any depth variations between sample sites.

As discussed in Section 1.2, we also strongly recommend that a second type
of electromagnetic induction survey instrument be simultaneously used along with the
EM-38 during all survey work. Insertion four probes and small, hand held wenner
arrays are both very useful for measuring the soil conductivity within the first 25 to
50 centimeters of topsoil. This added EM signal information can greatly increase the
accuracy of the fitted prediction functions, particularly those associated with the
near-surface sampling depths.

4.3 EC, Variation Induced by the Bed-Furrow Environment

The micro, bed-furrow environment can be another source of considerable
salinity variation, particularly towards the end of the cropping season (or throughout
the season in a fixed bed system). A percentage of the irrigation water deposited into
the furrows will absorb upwards into the bed, due to preferential capillary flow. This
water movement in turn will carry the majority of near surface soluble salts up into
the bed. In flood irrigated fields the relative difference between the near surface
furrow and bed salinity levels can become quite pronounced over time.

Figure 4.1 displays the geometrical distribution of soil salinity throughout the
near surface bed-furrow environment within a fixed bed, flood irrigated cotton field
in the Coachella Valley, California (sampled in 1992). Note that at the high mean
salinity level (23.2 dS/m throughout the bed-furrow environment), the ratio of bed to
furrow near surface salinity levels was 4:1 At the low level (5.8 dS/m) this ratio
actually increased to 8:1 Figure 4.1 indicates that the overall mean salinity level
would have been very poorly estimated by samples acquired either only in the furrows
or in the bed. (In this particular survey, it took 14 soil samples at each sample site
to adequately describe the 2-dimensional pattern of salinity present within the bed-
furrow environment.)

The main point here is not to suggest that such extensive sampling schemes
must always be employed within bed-furrow systems (unless, of course, estimating
the micro, 2-dimensional salinity distribution is the primary goal of the survey).
Rather, it is to point out the critical need for consistency with respect to borehole
locations; all soil cores should be sampled from the same place within the bed-furrow
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2-D ECe Profile Shape-Magnitude Plot
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Figure 4.1 2D salinity distribution within the bed-furrow environment of a fixed
bed system.
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environment. Furthermore, the EM survey data and sample soil cores should be
acquired from exactly the same area within this environment. If the EM signal data
are acquired over the furrows, then the soil samples should also be acquired from the
furrows, etc.

Some authors have suggested using composite sampling strategies (also known
as “bulking”) for averaging out bed-furrow variations. In composite sampling, soil
samples would be acquired from both bed and furrow locations and then mixed
together in an effort to obtain a more “representative” sample. We generally do not
recommend such strategies for two reasons. First, it doubles the field work without
providing any knowledge of the 2-dimensional, bed-furrow salinity distribution and
second, it often introduces more variability into the sample data (through poor mixing
processes) than it removes through averaging.

4.4  EC, Variation Induced by Traffic Patterns

Another source of potential EC, variation arises from soil compaction caused
by repetitive traffic operations. In many fields, tractor operators consistently drive
down the same set of furrows when performing various tillage and cultivation
operations throughout the growing season. This leads to a systematic pattern of
excessive compaction in a subset of furrows throughout the field, which in turn can
cause a cyclic variation in the irrigation water infiltration rate (Wu et. al., 1995).

Figure 4.2 displays EM-38 horizontal readings acquired along 30 adjacent
furrows in a buried drip irrigated cotton field subject to repetitive traffic influences
(Westlands Water District, 1991). In this case the traffic pattern induced a clearly
cyclic pattern in the EM, readings; the highest conductivity readings consistently
occurred in the compacted furrows.

The data shown in Figure 4.2 is rather atypical; in general, we have not found
compaction induced cyclic patterns in soil conductivity to be this pronounced in most
fields. None the less, it is a good idea to systematically avoid the compacted furrows
when conducting the EM survey if obvious traffic patterns are present in a field.
Excessive soil compaction will nearly always have at least some effect on the soil
salinity levels. Random surveying (and sampling) of both compacted and non-
compacted furrows in the same field can introduce additional variability into the
regression model salinity predictions, and should be avoided whenever possible.

4.5 EC, Variation Induced by Irrigation Management Practices

Irrigation management has a pronounced effect on determining the apparent
salinity distribution within a field, both spatially and with respect to depth throughout
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Figure 4.2 Tillage equipment compaction effect on the observed soil conductivity
in a drip irrigated cotton field.

the profile. The amount and frequency of irrigation will directly influence the
movement of soluble salts through the profile and across the field. The percent water
content of the soil during the electromagnetic survey will also be at least partially
determined by the elapsed time from the last irrigation event.

Since a change in irrigation management can seriously effect the 3-dimensional
salinity distribution within a field, it is important to avoid collecting signal readings
(and/or soil samples) from an area under more than one irrigation management
strategy during the electromagnetic survey. In practice, this means that any survey
area must be restricted to farmland under identical water management practices. For
example, suppose you wish to survey a 160 acre cotton field which has been sub-
divided into four 40 acre sections, where each section has been subject to different
irrigation techniques. Under such a scenario, you cannot conduct a single survey
across all 4 sections together; each 40 acre section must be individually surveyed and
soil sampled. This is necessary because each survey must be conducted entirely
within a single, homogeneous irrigation _management area.

The critical importance of “blocking” during an electromagnetic survey should
never be overlooked. The failure to restrict electromagnetic readings to an area under
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a single water management strategy can result in serious regression model bias and
inflated prediction errors, and corrupt the entire surveying process.

4.6 EC, Variation Induced by Deviations in Surface Elevation

Most farmland is typically laser-leveled to improve irrigation efficiency. Various
leveling designs are used, depending on the method of irrigation and the agricultural
crop under production. The three most common designs include (1) dead leveling,
(2) single-slope leveling, and (3) dual slope leveling. All three of these designs create
a theoretical plane which can be written mathematically as:

Surface Elevation = a, + a;x + a,y, (4.2)

where x and y represent the physical (x,y) coordinates, and the a,, a,, and a,
coefficients determine the primary and secondary slopes of the field. Note that in the
statistical literature, equation 4.1 is known as a “first order trend surface equation”
(Box & Draper, 1987).

The EMSMLR program can incorporate both first and second order trend
surface equations into the fitted salinity prediction model. Hence, any linear and/or
guadratic surface elevation effects can be explicity compensated for. These trend
surface equations can also be used to compensate for gradual changes in both soil
texture and water content across the survey area, if any such changes effect the soil
salinity distribution and/or electromagnetic signal response.

Occasionally, you may have to survey non-graded farmland which exhibits
significant local variation in surface elevation. In such a scenario it will usually be
necessary to conduct a surface elevation survey along with the electromagnetic
survey. This elevation data can then be directly incorporated into the regression
model, if this data contributes to an improvement in the prediction accuracy.

The EMSMLR program does not presently allow for the explicit inclusion of
surface elevation data in the modeling process. However, there are two ways you
can implicitly include elevation data into the prediction equation. First, you can
incorporate the surface elevation data directly into the sampling design by including
these data in the input survey file for use in the VALIDATE program. In other words,
one of your columns of electromagnetic signal readings would actually be surface
elevation data. This approach can be advantageous if there are severe local
deviations in the surface elevation across the field, and if you wish to ensure that
your sampling locations adequately reflect these deviations. Alternatively, you can
collect the ancillary elevation information during the survey process, and simply
replace the third principal component column in the EMSMLR input file with the
surface elevation readings during the modeling stage of the analysis. In this latter
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approach, the elevation data can be easily discarded if it does not significantly
improve the prediction accuracy of the regression model.

4.7  Electromagnetic Signal Variation Induced by Changes in Soil Texture

Of all the potential secondary factors which contribute to increased EM signal
variability, fluctuations in soil texture are the most troublesome and difficult to adjust
for. Textural variations across the field can rarely ever be measured in enough detail
to facilitate either efficient blocking strategies or the explicit inclusion of such
information directly into the regression model. Additionally, significant textural
variation often effects both the spatial EM signal data and the 3-dimensional soil
salinity pattern in dissimilar ways.

The nature and degree of textural variation will ultimately determine whether
a regression modeling approach can successfully estimate the spatial salinity pattern
in your survey area. It has been our experience that the regression modeling
approach works well in the following two types of textural variation scenarios: (1)
nearly all fields with minimal soil texture variability, and (2) most fields with moderate
soil texture variability, provided either the texture changes in a smooth and gradual
manner across the field, or the texture and salinity variations are strongly correlated.
On the other hand, we have seen the regression modeling approach fail in fields with
severe, chaotic texture variations, relatively low soil salinity levels, and poor
correspondence between the soil texture and salinity readings.

Fortunately, most all irrigated farmland typically encountered during
electromagnetic survey work falls into one of the first two categories described
above. Furthermore, if a chaotic, low saline field is encountered, the series of
statistical tests and prediction diagnostics contained within the EMSMLR program will
reveal the degree of bias in the fitted regression model. A quantitative decision can
then be made as to the merits of collecting additional samples and/or pursuing other
modeling techniques.

An example data set displaying high texture and low salinity variability
(AZ09.DAT) is included with the ESAP software. These data can be used to
demonstrate the various EMSMLR residual assessment (model validity) tests, and will
be discussed in detail in section 7.4.

4.8 Electromagnetic Signal Variation Induced by Other Soil Properties
Other physical soil properties also theoretically affect the EM signal readings

to various degrees. While these properties do not control and/or influence the soll
salinity directly, they can increase the apparent salinity variation by systematically
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confounding the signal response data. Examples of these properties include the soils
organic matter level, magnetic susceptibility, temperature, and water content level.

In most practical applications, significant variation in these properties needs to
be present before any meaningful corruption of the signal reading occurs. We have
not encountered a field with enough variation in either the organic matter level or
magnetic susceptibility to noticeably affect any type of EM reading. Likewise, a one
degree centigrade change in temperature throughout the entire soil profile typically
causes no more than a two percent change in the EM-38 signal readings. Since soil
temperature fluctuations below the 30 centimeter depth level in the soil profile occur
rather slowly, the entire survey process can usually be completed before a significant
change in the bulk-average soil profile temperature occurs.

Soil water content variations do effect the apparent conductivity readings.
However, in areas under uniform irrigation management practices, the degree of
spatial water content variability is typically minimal (provided significant soil texture
variation is not present) . Furthermore, a gradual fluxuation in the soil water content
level across the survey area can usually be compensated for through the use of trend
surface parameters in the regression model. Note also that variation in the water
content level through the soil profile (i.e., by depth) will not effect the regression
model prediction accuracy, provided the water content levels vary with depth in a
reasonably consistent manner throughout the field.

It is important to remember that if the water content of the soil drops too low
(i.e., the soil becomes too dry) then the electromagnetic signal readings can become
seriously dampened. Indeed, if the survey area is absolutely void of any moisture
throughout the entire soil profile, then it will be impossible to measure any
conductance whatsoever. In most practical applications, we have found that good
EM signal data can be obtained providing the survey area (field) is at or above 30
percent field capacity. As already mentioned, the surveying of especially dry areas
should be avoided, since the conductivity of dry soil is not reflected in the signal
information.

4.9 Assessing Short Scale (Nugget) Salinity Variation

It is not uncommon to observe a certain degree of variation in soil salinity levels
over very short distances. For example, near surface furrow samples acquired 50 cm
apart can vary anywhere from 10 to 50 percent due to micro-scale soil composition
characteristics and/or fluctuations in preferential water flow.

Electromagnetic induction instrument readings tend to average out this micro-
variation. The degree to which this averaging occurs depends directly upon the
instruments “foot-print”; e.g., the volume of soil incorporated into the signal
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response. For example, an EM-38 signal will be influenced by any electrically
conductive material within about 1 to 2 meters of the instrument (both laterally and
vertically). Hence, it is typically assumed to have about a 1.5 meter foot-print.

Because the volume of soil measured by the EM-38 is so much larger than the
volume obtained by conventual soil sampling techniques, an estimate of the degree
of short scale salinity variation needs to be acquired for model validation purposes.
Such an estimate can be acquired by obtaining “replicate” sample cores (two sample
cores spaced about 50 centimeters apart) at some of the calibration sites during the
soil sampling process. The replicate cores can then be used to estimate the short
scale salinity variation (referred to as the “nugget variation” in geostatistical models
and as the “pure error estimate” in spatial regression models). The measured salinity
data from these cores also allows the EMSMLR program to construct a very useful
residual autocorrelation test, known as a “lack-of-fit" test, for assessing the spatial
residual independence assumption (Lesch et. al., 1995a).

In a standard 16 site calibration sampling design, we commonly acquire
replicate sample cores at 4 to 6 of the 16 calibration sites. These four to six sites
can either be chosen at random (from amongst the 16 sites) or selected throughout
the survey area (which is usually preferable). Additionally, the core separation
spacing (usually 50 centimeters) should be the same at all sites and both the primary
and replicate cores should always come from the same location with respect to the
bed-furrow environment (i.e., both from the bed, or both from the furrow).

Techniques for estimating the short scale salinity variation and performing
residual lack-of-fit tests are described in Lesch et. al., 1995a. These estimates and
testing procedures are automatically calculated by the EMSMLR program when
replication salinity data are available (Section 5.3).

4.10 Surveying & Sampling Considerations: An Overview

We have described a number of deterministic and stochastic mechanisms which
can create both soil salinity and EM signal variation in irrigated farmland, and
discussed appropriate sampling methods to minimize their effects. A summary of
these methods is given on the following pages, along with some additional tips and/or
suggestions for implementing effective surveying and sampling practices.

A. EM Surveying Techniques
1. Decide on the survey grid size before beginning the survey process. Use only

centric, systematic grids (square, rectangular, or triangular) and keep the total
number of survey sites at a manageable level so that the survey process can
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be completed in a reasonable time-frame. For example, in a 40 acre field, a 12
by 12 grid of survey sites can be acquired in one day, and is usually more than
adequate for producing good field median EC, estimates and a reliable salinity
map.

Acquire all EM-38, wenner, and/or four-probe readings in the same locations
with respect to the bed-furrow environment at every survey site (for example,
only in the furrows). If four-probe readings are being acquired, try to take
either two readings (spaced 50 centimeters apart in the furrow) or three
readings (spaced 30 centimeters apart in the furrow) at each site, and use the
average of these two or three readings as the input four-probe data within the
VALIDATE program. (Averaging your four-probe data will produce a four-probe
foot-print which is more consistent with the size of the EM-38 footprint, and
reduce the four-probe signal variability induced by micro-salinity fluctuations.)
Collect only near surface four-probe data (for example, a O-30 cm depth
reading) to minimize the survey workload at each site.

Leave some sort of identifiable marker at each survey site (such as a numbered
bag) so that the exact location of each site can be ascertained during the soil
sampling phase of the survey.

Make sure that your survey area is contained entirely within an area under a
single irrigation management practice. (This typically implies that you limit your
survey area to an individual field.)

Try to conduct the survey on soil at or above 30 percent field capacity, and
make sure that the soil water content is relatively consistent across the entire
survey area.

Avoid collecting survey data in obviously compacted furrows.

If possible, try to limit your survey area to landscape with reasonably similar
soil texture characteristics.

Soil Sampling Techniques

Acquire the soil cores (at all the selected calibration sites) directly over the
location of the EM signal readings, and keep the sampling depth consistent
from site to site. When acquiring samples at multiple depths, always attempt
to absolutely minimize any sample depth variations between sites.

Avoid including the dry, crumbly, immediate topsoil in the near surface soil
sample. This topsoil “fluff” is not reflected in any of the EM signal readings
(because it has zero moisture content), nor is it typically reflective of the
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average salinity level within the first 25 to 50 centimeters of the soil profile.

Collect replicate samples at four to six of the calibration sites. Sample the
primary and replicate soil cores 50 centimeters apart, such that each core is
approximately 25 centimeters from the center of the location where the EM
signal data was acquired. Be sure to acquire all primary and replicate
calibration samples from the same location with respect to the bed-furrow
environment at every site.

Decide on a reasonable identification system for the soil samples, and number
all the soil sample containers before beginning the sampling process. (You're
much less likely to make container labeling errors if all the labeling is completed
before hand.) Use the SITES. TXT and SSS.MAP printouts produced by the
EMCCRSD program to identify the calibration site locations. Additionally, use
the CRWSHEET. TXT printout while soil sampling to keep track of the sampling
progress and to record any unusual observations about the individual soil
samples; such as depth to water table, abrupt changes in soil texture, etc.
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50 EMSMLR PROGRAM DOCUMENTATION’

5.1 Program Description

EMSMLR is a comprehensive, menu driven spatial regression modeling software
program designed to predict the soil salinity levels across a survey area, based on the
observed EM signal and calibration soil sample data.

EMSMLR reads as input an ASCII text file containing the calibration sample soil
salinity levels, along with the survey output data from the EMCCRSD.OUT text file
(created by the EMCCRSD program). It then allows the user to estimate and validate
an optimal spatial regression model for predicting the soil salinity levels at all non-
sampled survey locations, creates a salinity diagnostic report for the survey area, and
produces an output file suitable for use in the SALTMAP program. The EMSMLR
program can also be used to test for changes in the field geometric mean salinity level
over time, if salinity data are acquired at one or more preselected monitoring sites in
the future.

EMSMLR creates a number of different output files which document the various
model statistics, parameter estimates, and residual tests performed during the
analysis. Nearly all of these files can be either printed out while still running the
program or written to the hard disk for future reference. A detailed explanation of the
file naming system, along with a discussion of the contents of each file is given in
Section 5.4.

5.2 An Overview of the EMSMLR Menu System

All components of the EMSMLR program are controlled through the use of a
menu system. In order to successfully use the program, you must be familiar with
both the operation of the menu system and the specific function that each menu
subroutine performs. This section presents an overview of the menu system; the
specific menu subroutine functions will be described in Section 5.3.

A hieratical layout of the EMSMLR menu system is shown in table 5.1. After
initiating the program, the SMLR MODELING menu screen will appear (referred to in
Table 5.1 as the main menu screen). This menu allows you to perform one of six
distinct operations: (1) read an input file into the program, (2) identify one or more
regression models most suitable for predicting the spatial soil salinity distribution
throughout your survey area, (3) estimate and validate a specific regression model,
(4) create a salinity diagnostic report for your survey area, (5) test for a change in the
predicted field geometric mean salinity level over time, and (6) exit to DOS.
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Table 5.1 A hieratical layout of the EMSMLR Menu System.

MAIN MENU SCREEN

SMLR MODELING MENU

Read Input File

Model Identification

Model Estimation / Validation
Salinity Diagnostic Report

Site Monitoring: Net Flux Testing
Exit to DOS

ook wN e

mmceeeemee wmmee =weee SUB LEVEL 1 MENU SCREEN  ceeeeecccsaamcacacaan

ESTIMATION / VALIDATION MENU

Display Model Estimation Results
Display Residual Diagnostics
Display Prediction Diagnostics
Print Results

Return to Main Menu

arwNE

SUB LEVEL 2 MENU SCREENS

MODEL ESTIMATION SUBMENU PREDICTION DIAGNOSTICS SUBMENU

1. Model Summary Statistics 1. Summary Predictive Criteria
2. ANOVA Tables 2. Univ Stats: Prediction Estimates
3. Parameter Estimates 3. Univ Stats: Prediction Variance
4. Return to ESTIMATION / VALIDATION Estimates
Menu 4, Prediction Plots: (Log Data)
5. Prediction Plots:
(Back-Transformed Data)
RESIDUAL DIAGNOSTICS SUBMENU 6. Return to ESTIMATION / VALIDATION
Menu
1. Univariate Statistics
2. Influence Diagnostics
3. Correlation Matrix FILE PRINT SUBMENU
4, Moran Spatial Autocorrelation Tests
5. Residual Plots (Against Predictions) 1. Print Model Estimation Results
6. Residual Plots (Against Locations) 2. Print Residual Diagnostics
7. Residual Plots (Normality Assessment) 3. Print Prediction Diagnostics
a. Return to ESTIMATION / VALIDATION 4. Write all Results to Files
Menu 5. Return to ESTIMATION / VALIDATION

Menu
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After initiating the program, you must first perform option 1; i.e., read in an
input file. Next, you can invoke option 2 (the model identification subroutine), or
jump directly to option 3 (the model estimation and validation subroutines). Once a
suitable regression model has been estimated and validated, you can invoke options
4 and/or 5. Note that you can quit the EMSMLR program at any time from this menu
by invoking option 6.

The various regression model estimation and validation operations must be
initiated from the ESTIMATION / VALIDATION menu screen (referred to as the sub
level 1 menu screen in table 5.1). This screen will appear whenever you choose
option 3 in the SMLR MODELING menu. This menu screen allows you access all
model estimation and validation operations, which include (1) displaying the model
statistics and parameter estimates, (2) displaying the residual plots and test statistics,
(3) displaying the salinity prediction estimates and prediction plots, and (4) creating
and printing the output text files. Note that option 5 on the ESTIMATION /
VALIDATION menu screen can be used to get back to the SMLR MODELING menu
screen,

When you choose one of the first four options from the ESTIMATION /
VALIDATION menu, a new submenu screen will appear. Examples of each of these
submenus are shown at the bottom of Table 5.1 (referred to as the sub level 2 menu
screens). Choosing option 1 from the ESTIMATION / VALIDATION menu will cause
the MODEL ESTIMATION submenu screen to appear. Likewise, choosing options 2,
3, or 4 will cause the RESIDUAL DIAGNOSTICS submenu, PREDICTION
DIAGNOSTICS submenu, or FILE PRINT submenu screens to appear, respectively.
Note that the specific estimation, validation, and/or file print subroutines can only be
invoked from these submenu screens.

Option 3 in the SMLR MODELING menu is the only option associated with
additional sub level menus; choosing any other option from this menu will invoke
operations which are completely self contained (i.e., operations which do not branch
off to other menu systems).

5.3 Program Operation: [ Specific Menu Subroutine Functions ]

To start the EMSMLR program, move to the c:\emsurvey\phase2 subdirectory
and type emsmlr [<] at the DOS prompt. The program will print some initial header
information, and ask you to strike any key to continue. At this point, typing the [«]
key will send you into the SMLR MODELING menu, which is the program’s main menu
system. From here you can invoke the various program options discussed on the
following pages.
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1. Read Input File:

Choosing this option allows you to enter your input data file. The first
statement printed to the screen will be:

Please enter the path/file name:

Note that your input data file can reside anywhere on your hard drive, although we
recommend that you store your data in the c:\emsurvey\data subdirectory. After you
type in the correct path and filename, the next statement printed to the screen will
be:

Please enter the survey code (4 character max):

At this point, you must specify a four character survey code, such as “wwd1", which
will be used as the first four characters in all output text file names (see Section 5.4).
After you verify the input file and survey code information, the following information
will appear on the screen:

File name: C: DX XXX XXX XXX
Title: XXXXEXXHKHKKXXXXXXKX
Survey Code: XXXX

Abbreviation of survey type: XXIXXIXX

Number of survey sites: XXX

Number of calibration sites: XX

Number of sites with two samples per depth: X

Number of sample depths: X

Number of principal component scores: X

You should use this information to verify that the correct file has been read into the
EMSMLR program (this information is explained in more detail in Section 5.4).

Next, the following question will appear:
Verify input data (y/n):

You should answer no at this prompt, unless you want to view each line of input
data.

After reading in your data, the program will print to the screen the mean,
variance, and correlation matrix associated with the input calibration data. The
following prompt will then appear:

View bivariate log salinity plots? (y/n):
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Answer yes if you wish to view these plots. Next, another plot prompt will appear
on the screen:

View the plots of 1st principal component against the log salinity data? (y/n):

Again, answer yes if you wish to view these additional plots. After these two plot
prompts, the final statement printed to the screen will be:

Press any key to return to main menu.

2. Model Identification:

This option can be used to identify one or more spatial regression models which
fit your sample data well.

In the EMSMLR program, you are allowed to choose from among 50 different
parameter combinations for the final regression model (if you are using only 2
principal component scores, you can choose from 30 parameter combinations). There
are two types of model parameters used in the regression equations; signal (S)
parameters and trend surface (T) parameters. Signal parameters are associated with
the principal component scores, and trend surface parameters are associated with the
X,y location coordinates of your survey data.

EMSMLR uses the following abbreviation system for identifying parameter
combinations in a regression model:

Signal Trend Surface
Parameters Abbreviation Parameters Abbreviation
PC1 Si- none TO
pcl, pc2 s2- X TxI
pcl, pc2, pcl2 S2i- Y Tyl
pcl, pc2, PC3 s3- X, Y Txlyl
pcl, pc2, pcl2, pc3 S3i- X, x2 Tx2
y, ¥’ Ty2
X, Y, X Tx2y1l
X,y, Y2 Tx1y2
X, Y, X% y? Tx2y2
X, y, xy, X vy? Tquad
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Hence, if the regression model contains parameters for the 1st, 2nd, and 3rd principal
component scores, and parameters for linear drift in both the x and y directions, the
model is abbreviated as S3-Tx1yl. Likewise, if the model includes parameters for the
1st and 2nd principal components scores, an interaction parameter between the 1st
and 2nd scores, and a full second order trend surface equation, then the model is
abbreviated as S2i-Tquad.

When you invoke option 2, a series of regression models which reflect all
possible parameter combinations are fitted to the calibration data. After each model
is estimated, both the PRESS residual statistic and average prediction variance
estimate (APVE) are computed. When the program is finished estimating all of the
models, these PRESS and APVE statistics are ranked and then the model
abbreviations associated with the 10 best statistics in each category are displayed to
the screen.

Both the PRESS and APVE statistics are summarized and displayed in two
manners; first as an absolute score and then as a relative (scaled) score. There will
be no difference in the ranking of the absolute and relative scores when you are
modeling salinity data from only one sample depth. However, if you have acquired
multiple sample depths, then these scores can differ. Furthermore, the ranking of the
PRESS and APVE scores will typically differ, even if the salinity data comes from only
one sample depth. Therefore, these scores should usually be used as a guideline to
help you narrow down the choices of parameter combinations in your final regression
model, rather than a rigorous criteria for choosing a single best model.

The mathematical details behind the estimation of each statistic are discussed
in Lesch et. al., 1995. Intuitive definitions of each score are given below.

PRESS statistic: a jack-knifed, prediction sum of squares estimate; i.e., the
squared difference between the observed and prediction Ln
salinity level at each calibration site, computed by the regression
model without the model being fitted to the Ln salinity data at that
site.

APVE statistic: the theoretical, average prediction variance of the Ln salinity
predictions associated with all the remaining, non-sampled survey
sites, based on the fitted regression model and assuming that the
model contains the correct number of parameters.

Both statistics are computed for each sample depth, and then summed across the
sample depths to create the absolute and relative scores. The absolute scores are
simply the sum of the individual statistics computed for each sample depth, divided
by the total number of sample depths. In theory, the best regression model should
produce the smallest absolute PRESS and APVE scores . The same holds true for the
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relative scores (the best model should again produce the smallest scores); however,
note that the relative scores are computed differently. After all 50 PRESS and APVE
statistics have been estimated for all the sample depths, the minimum statistics from
each sample depth are identified. All 50 PRESS and APVE statistics are then divided
by these minimum statistics, and then summed across the sample depths. Hence, if
ksample depths are acquired at each calibration site, then the minimum relative
PRESS and APVE scores must be > k.

After the 10 best models in each score category are displayed to the screen,
the following prompt will appear:

Print the full results? (y/n):

If you answer yes, the program will print four output text files, which will list the
individual absolute and relative PRESS and APVE statistics for each model at each
depth. If you answer no, then another prompt will appear:

Print the top 10 results? (y/n):

If you answer yes at this prompt, then you will receive a single printout which lists
the top 10 models in each category, based on the absolute and relative PRESS and
APVE summary scores. Regardless of whether you answer yes or no to either
prompt, the program will create and save four ASCII text files which contain all of the
individual statistics for each model (see Section 5.4).

Finally, the last prompt which will appear on the screen will be:

Press any key to return to main menu.

3. Model Estimation / Validation

Option 3 can be used to estimate and validate any one of the 50 different
regression models analyzed by the model identification subroutine. Immediately after
choosing option 3, the information menu shown on the following page will be printed
to the screen:
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Model Selection Menu

PC Scores TS Components

1. PC7 0. none

2. PC7 PC2 7. X

3. PC7 PC2 PC72 2. Y

4, PC7 PC2 PC3 3. XY

5. PC7 PC2 PC72 PC3 4. X X?
5. Y ¥?
6. XY X2
7. XY Y2
8. X Y XY
9. X Y XY X2VY?

Please enter a 2-digit model code (70 - 59):

You must select the parameter combination (for the regression model) by specifying
the appropriate two digit code. For example, if you wish to use the S3-Txlyl
regression model, the two digit code would be 43. Likewise, 20 would be the correct
two digit code for the S2-TO regression model; i.e., the model containing only the 1st
and 2nd principal component scores and no trend surface parameters.

NOTE: If you collected only EM-38 signal data, you will be using only 2 principal
component scores and you will have only 30 models to choose from.
Therefore, lines 4 and 5 under the PC Scores column will not appear on
the screen, and the valid range for the two digit model codes will be
from 10 to 39.

After confirming your regression model selection, the EMSMLR program will
print the following message to the screen:

Es tima ting model, please wait.. .

Once the program computations are completed, the ESTIMATION / VALIDATION
menu will appear. At this point, you can access any one of the following four
submenus; the MODEL ESTIMATION submenu, the RESIDUAL DIAGNOSTICS
submenu, the PREDICTION DIAGNOSTICS submenu, and the FILE PRINT submenu.
The specific subroutines associated with each of these submenus are shown in table
5.1 and described below.

From within the MODEL ESTIMATION submenu, choose option 1 to view the
model summery statistics, option 2 to view the model analysis of variance (ANOVA)
tables, and option 3 to view the model parameter estimates. The model summary
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statistics include the R? values, adjusted R? values, mean square error (MSE)
estimates, root MSE estimates, and back-transformed model coefficient of variation
scores (estimated as CV = 100[(e™*t-1 )°%]). The ANOVA tables display the degrees
of freedom, sum of squares, and mean square error estimates, along with the F test
scores and probability levels. If replicate sample cores have been collected, the lack-
of-fit (LOF) test scores and probability levels will also be displayed here. The
parameter information includes the individual parameter estimates, standard errors,
t-test scores and probability levels. Note that when sample data from multiple depths
are being modeled, all of the above information will be displayed for each depth.

There are seven separate options available from within the RESIDUAL
DIAGNOSTICS submenu. These seven options allow you to test and/or display
various features of the residual distribution(s), in order to access the validity of the
regression modeling assumptions. To view the univariate statistics associated with
the studentized residuals, choose option 1. These summary statistics include the
mean, variance, skewness, quantile rankings, and residual stem-leaf (histogram) plots
for each sampling depth. Option 2 can be used to list the individual studentized
residual values (for each sampling depth), along with the hat leverage values
associated with each sample calibration site. The raw (non-studentized) residual
depth correlation matrix can be displayed using option 3, and the Moran spatial
autocorrelation tests scores and approximate probability levels can be displayed using
option 4. Options 5, 6, and 7 can be used to display various types of residual plots.
Choose option 5 to plot the studentized residuals against the predicted Ln salinity
levels, option 6 to plot the studentized residuals against the x and y sampling
coordinates, and option 7 to create residual QQ plots (for assessing the residual
normality assumption).

There are five options available from within the PREDICTION DIAGNOSTICS
submenu. Options 1, 4, and 5 allow you to access how well the estimated regression
model fits the observed sample data. Option 1 can be used to display the regression
model PRESS and APVE statistics (for each sampling depth), while options 4 and 5
will display plots of the observed versus model predicted salinity levels in Ln and
back-transformed units, respectively. Options 2 and 3 display some pertinent
summary statistics concerning the regression model predictions associated with the
remaining non-sampled survey sites. Option 2 can be used to display the mean,
variance, skewness, and quantile estimates of the predicted salinity levels (in both Ln
and back-transformed units) at all the non-sampled survey sites. Likewise, option 3
can be used to display the mean, variance, skewness, and quantile estimates
associated with the theoretical prediction variance estimates.

The FILE PRINT submenu can be used to print and/or save most all of the
information accessed through the MODEL ESTIMATION, RESIDUAL DIAGNOSTICS,
and PREDICTION DIAGNOSTICS submenus. You should use option 1 to print the
model estimation information, option 2 to print the residual diagnostics, and option
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3 to print the prediction diagnostics. Additionally, choose option 4 if you wish to
save all of this information to the hard disk.

NOTE: The EMSMLR program can not print out or save to the hard disk any of
the screen plots displayed from the RESIDUAL DIAGNOSTICS or
PREDICTION DIAGNOSTICS submenus.

The various estimation statistics and residual/prediction diagnostics discussed
above can be used for two purposes. First, to determine if the general assumptions
associated with the regression modeling approach are satisfied. This should be done
by (1) checking for spatially correlated residuals using the LOF and/or Moran residual
test scores -- significant scores imply that the residuals are spatially autocorrelated,
(2) checking the constant variance assumption by plotting the residuals against both
the sampling locations and the predicted log salinity levels -- the residual/location and
residual/predicted plots should be devoid of any pattern, and (3) using the univariate
residual statistics and residual QQ plots to check for outliers and to assess the
residual normality assumption -- the residuals should fall along an approximately
straight line in the QQ plots. Most of the remaining statistics and diagnostics can be
used for the second purpose, which is differentiating between various regression
model parameter combinations. The regression model summary statistics, parameter
estimates, residual influence diagnostics, and the assorted prediction statistics and
diagnostics can all be used to help select the final combination of model parameters.
Ideally, the selected model should have at least some of the following properties at
each sample depth; (1) a high R? and low MSE estimate, (2) significant parameter
estimates, (3) no apparent residual outliers, and (4) reasonably low hat leverage
scores. Furthermore, the predicted salinity levels should display a strong, linear
relationship with the observed salinity data, on both the natural log and back-
transformed scale.

NOTE: Most all of the residual and/or prediction diagnostics used in the
EMSMLR program are discussed in detail in Atkinson, 1985; Myers,
1986; and Weisberg, 1985.

4. Salinity Diagnostic Report

Once a suitable regression model has been estimated and validated, a salinity
diagnostic report can be generated. The generated report will include the following
information; (1) field median point estimates, (2) range interval estimates, (3) mapping
classification accuracy scores, and (4) spatial variation index scores. The point
estimates consist of depth specific mean Ln salinity and median (geometric mean)
salinity estimates for the entire survey area, along with their respective variances and
confidence intervals. The range interval estimates display the percentage of the
survey area, by depth, which falls into one of five distinct salinity classes. The
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mapping classification scores estimate the theoretical accuracy of the predicted
spatial salinity map, assuming the mapping contours correspond to the range interval
cutoff levels. Finally, the spatial variation indices divide the total observed salinity
variation within the survey area into two components; short scale (micro) variation,
and field scale (macro) variation.

The first statement which appears after invoking option 4 is:

The current model is: Sx- Txx
Proceed with this model? (y/n):

After answering yes, the following statement will appear

Please choose the desired confidence level: (1) 90%, (2) 95%, (3) 99%:

followed by

The current range cutoff levels are 2.00, 4.00, 8.00, 16.00
Change the current range setting? (y/n):

At the confidence interval prompt, you can select either at 90%, 95%, or 99%
confidence interval by entering the numbers 1, 2, or 3, respectively. At the range
interval prompt, you can select a new set of cutoff levels by answering yes and
entering the new levels at the appropriate prompts.

NOTE; The new range interval cutoff levels must be entered in increasing,
sequential order. Additionally, the default range intervals are assumed
to be in dS/m units.

The last question printed to the screen is

This program assumes that your instrument IEM) data was collected on a systematic
grid across the entire survey zone. Is this correct? (y/n):

If you answer no, a warning statement will appear on the screen, notifying you that
all the field diagnostic summary statistics are biased. After answering this last
guestion, the program will perform the necessary report calculations and then display
then to the screen. After displaying all four parts of the salinity diagnostic report, you
will also have the option of printing out the results. At this point, the entire
diagnostic report will also be saved to the hard disk.
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5. Site Monitoring: Net Flux Testing

This option allows you to test for a change in the survey areas average Ln
salinity level over time. To use this option, you must collect additional salinity
samples at one or more monitoring/validation sites, and have this additional data
summarized and stored in a separate ASCII text file (see section 5.4).

The first statement which appears after invoking option 5 is:

The current model is: Sx- Txx
Proceed with this model? (y/n):

After answering yes, the following statement will appear

Please enter the path/file name:

followed by

Please choose the desired confidence level: (1) 90%, (2) 95%, (3) 99 %:

After entering the correct input path/file information and selecting the appropriate
confidence level, the program will display the net flux calculations on the screen.
This information will include the observed (sampled) and model predicted mean Ln
salinity levels, by depth, along with the standard deviations of the predicted levels,
t test scores and probability levels. The average net-flux at each depth will also be
estimated, along with the appropriately specified confidence intervals (for these net
flux estimates).

NOTE: The net flux in the salinity level is estimated as 100[e'®™-1 1, where 0
represents the observed average Ln salinity level across all the
monitoring sites, and P represents the average Ln predicted level.

After displaying the net flux test results, you will have the option of printing
out these results. At this point, these test results will also be saved to the hard disk.
6. Exit to DOS

As previously mentioned, this option should be used to end the EMSMLR
program. Note that it can be invoked at any time from the SMLR MODELING menu.
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5.4 Input/Output File Description

There are two input ASCII text files accepted by the EMSMLR program; the
calibration survey/salinity data file (which is required) and the data file containing the
monitoring/validation soil salinity information (which is optional). Both files have
specific text and column structure requirements, which will be described shortly.

There are two ways that you can create either of these input ASCII text files.
The first way to create these files is by using the supplied utility program DATALOAD
(this program is located in the c:\emsurvey\utility subdirectory). To use the
DATALOAD program, you must have saved the EMCCRSD.OUT output text file (the
output file produced by the EMCCRSD program, see Section 3.2). You also need to
have your laboratory determined calibration and/or monitoring/validation salinity data
either saved as ASCII text files, or in front of you when you initiate the DATALOAD
program (so that this information can be typed in via the keyboard). To use the
DATALOAD program, move into the c:\emsurvey\utility subdirectory, type dataload
[<] at the DOS prompt, and follow the instructions contained in the on-line help

facility.

If you prefer, you can create either of the EMSMLR input files using your own
favorite database management program. In order to do this, you must have access
to the EMCCRSD.OUT text file, your laboratory analyzed soil salinity data, and a
database program (or text editor) capable of producing a format specific text file by
merging together multiple ASCII input files. You must also be familiar with the
specific text and column structure requirements of each EMSMLR input file. Even if
you never intend to create any input files in this manner, you should become familiar
with the text and column structure requirements. You will need to know this
information, should you ever need to modify an input file after it has been created by
the DATALOAD program.

The first two lines of the input calibration survey/salinity data file must have
the following structure in order to be successfully read by the EMSMLR program:

Line 1: survey area title (40 character or less)
Line 2: nl n2 n3 n4 n5 (all integer values)
where
nl = the total # of EM survey sites throughout the survey area,

n2 = the total # of soil salinity calibration sites throughout the
survey area,

n3 = the total # of calibration sites with two salinity samples per
depth (i.e., the # of sites where replicate salinity
cores were acquired)
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n4 = the # of salinity sample depths at each site,
n5 = the # of principal component scores in the input file.

Note that the acceptable bounds on nl through n5 are as follows:

43 < nl < 399

15 < n2 < 32

0 < n3 < n2, with the restriction that (n2+n3) < 40
1<n4<6, and

n5 = 2 or 3.

The abbreviated survey code attached to your input file will be generated from line
2 using the calibration, replication, and sample depth information (i.e., n2, n3, and
n4). The survey code will always be expressed as [n2]-[n3]r/[n4]d. For example, if
your input data consisted of 18 calibration sites with replication cores from 4 sites
and 5 sampling depths acquired at each site, then the survey code would be written
as 18-4r/5d.

The remaining lines in the input file must list the survey information in the
following order; (1) the site ID, (2) the replication code, (3) the sample Ln salinity
levels across all n4 sample depths, (4) the n5 principal component scores, and (5) the
spatial x,y coordinates. The site ID column must contain distinct, integer value site
identification codes. The replication code column must contain one of three integer
values; 0, 1, or 2. It should be set to 0 if no salinity data were acquired at the site,
1 if salinity data were acquired at the site and these data come from a primary core,
and 2 if the acquired salinity data come from a replicate core sample. The next n4
columns must contain either the natural log transformed levels of the sample salinity
data (listed in increasing depth order) or periods to indicate that no data were
acquired at the site. After this, the next n5 columns must contain the principal
component scores, listed in increasing order. Finally, the last two columns must
contain the spatial x and y coordinate data, respectively. Note that the EMSMLR
program can accept EC, information at each site from one primary and one replicate
core only. Note also that all calibration sites (i.e., sites associated with sample
salinity data) must be listed at the beginning of the file, and that the salinity
information associated with a replication core must be listed immediately after the
primary salinity core information in the input file (on a site by site basis).

An abbreviated version of the tutorial input data set is shown in table 5.2. The
full data set resides in the c:\emsurvey\data subdirectory, in a file entitled
WWD 1.DAT.

A calibration survey/salinity input data file can have any valid DOS name and
extension, and reside anywhere on you hard disk. However, we recommend that you



Table 5.2

Partial listing of the ASCII input text file WWD1.DAT.

Westland Field 1

178
14
18
18
25
30
61
71
71
80
80
89
104
114
124
127
160
164
170
170
180
180

O 0030 WU b W

[y
o

171
172
174
175
176
177
178
179
181

1
1
2
1
1
1
1
2
1
2
1
1
1
1
1l
1
1
1
2
1
2
0
0
0]
o]
0
0
0
0
0
0

OCO0OO0O0OO0O0O0O0OO0

16 5
2.13983
0.44725
1.45115
0.54812
2.28054
1.78440
1.97269
2.11541
0.12751
0.08618
2.19467
1.45815
1.80187
1.96235
0.92980
0.44340
1.60322
2.25518
2.21964
1.43198
0.25542

3
2.28707
1.35196
1.85848
0.48551
2.53576
2.32601
2.43502
2.58415
1.77360
1.98142
2.55202
2.30298
2.54866
2.66166
1.96009
0.86415
2.38223
2.69773
2.77614
1.14994
0.41078

3

2.37388
2.04368
1.94762
1.08620
2.66445
2.48582
2.65169
2.77128
2.34861
2.26768
2.60992
2.44790
2.69679
2.67511
2.32082
1.39946
2.45342
2.69273
2.78062
1.88964
1.12590

0.19527
-0.58996
-0.58996
-0.89427

1.46112
-0.30900

0.94645

0.94645
~1.16429
-1.16429

1.00235
-1.03820

1.03919
-0.15531
-1.06985
-0.99402

0.48703

1.43900

1.43900
-1.49107
-1.49107
-0.88096
-1.21476
-1.33616
-0.59666
-1.25330
-1.18066
~1.07546
-0.77222
-0.52699
-0.53795

1.11078

0.79410
-0.84571
-1.02428
-1.33019
-1.34593
-1.20500
-1.31753
-1.42338

2.35261
0.57199
0.57199
0.96710
0.62648
-0.44208
-0.98932
-0.98932
-1.69552
-1.69552
1.23840
-0.88657
-0.99689
-2.07773
-0.82795
1.43640
0.10197
-0.11955
-0.11955
0.32601
0.32601
0.95718
0.74876
1.37840
-0.06650
0.77502
0.91266
0.48231
0.42652
1.16352
2.68214

-0.35516
-1.07959
-0.45999
=0.19180

0.41186

0.50541
-0.44132
-0.15898
=0.22541

-0.36745
-1.23556
-1.23556
-1.03467
1.12343
1.70459
0.99645
0.99645
-1.22889
-1.22889
-1.40197
0.87646
-0.83981
-0.63067
0.30467
1.08764
~1.99581
-0.33477
-0.33477
0.11692
0.11692
-2.45959
-0.84224
-1.36585
-1.89432
-0.12878
-0.89863
0.36584
-0.78172
1.24036
0.76743

-1.63649
-1.29098
-0.69455

2.17142
~-0.08571

0.36075
-0.99610
-0.33702
-0.02352

6.375
6.375
6.375
6.375
5.875
4.875
4.375
4.375
3.875
3.875
3.875
2.875
2.875
2.375
2.375
0.875
0.875
0.375
0.375
0.375
0.375
6.875
6.875
6.875
6.875
6.875
6.875
6.875
6.875
6.875
6.875

0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375

6.775
4.575
4.575
0.725
2.925
5.675
4.025
4.025
1.825
1.825
6.775
0.725
6.225
3.475
1.825
2.925
5.125
6.775
6.775
1.275
1.275
0.725
1.275
1.825
2.375
2.925
3.475
4.025
4.575
5.125
5.675

6.225
5.675
4.575
4.025
3.475
2.925
2.375
1.825
0.725

59
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store this file in the c:\emsurvey\data subdirectory, and that you give it a four
character DOS name, followed by a .DAT extension. Additionally, we recommend
that you use this four character file name as your four character survey code in the
EMSMLR program. Note that you must always create a calibration input file before
running the EMSMLR program.

VWARNI NG, The EMSMLR program will produce spurious results and/or crash if the
input calibration file structure is not properly specified.

NOTE: The EMSMLR program assumes that the calibration salinity data is
measured in Ln(dS/m) units. If your sample data has been measured in
some other units, you should convert your readings to dS/m units before
using the DA TALOAD program (DA TALOAD will automatically apply a
Ln transform to the user specified soil salinity data).

As already mentioned, the input file containing the average Ln salinity levels
associated with one or more monitoring sites can also be created using either the
DATALOAD utility program or a text editor. If you create this file yourself, it should
have the following file structure:

Line 1: m my,...m; j=n4
where
m, = the average Ln salinity level in the first sampling depth for all v
monitoring samples,
m, - the average Ln salinity level in the second sampling depth for
all v monitoring samples,

m; = the average Ln salinity level in the jth sampling depth for all v
monitoring samples.

Line 2: n6 (integer value)
where
n6 = the total number of monitoring samples.

Lines 3
through
n6+2: the individual monitoring site id numbers (one per line).

Note that the average Ln salinity levels at all depths must be based on the same
number of monitoring sites. If the average salinity level can not be computed for a
specific depth (because no samples at this depth were obtained at any of the
monitoring sites), then a period should be used to indicate this missing data on line
1. Also, note that the EMSMLR program will not accept any monitoring site id
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numbers which coincide with calibration site id numbers. In other words, you cannot
specify an individual site to be both a calibration and monitoring site in the same field.

As with the calibration input file, we suggest that you store this file in the
c:\emsurvey\data subdirectory. We also suggest that you assign the file name to be
the same four character name used for the calibration file, and that you specify the
DOS extension to be .NEW. The tutorial data file containing the validation salinity
data is shown in table 5.3. Note that this file resides in the c:\emsurvey\data
subdirectory, as is entitted WWD 7. NEW.

The EMSMLR program has to capability to generate up to 20 output text files
which list the various model estimation, validation, and prediction results. A
structured file naming system is used by the EMSMLR program in order to help the
user keep track of the various output files. All output files receive eight character
names, where the first four characters are determined by the user specified four
character survey code and the last four characters are determined by the program.
Additionally, only two types of three character DOS extension codes can be assigned
to these files. The first possible DOS extension code is .MIS, which represents an
abbreviation for “model identification score”. This extension code is placed after the
four files created in the model identification subroutine. The second possible DOS
extension code is .M&&, where the && are wildcard symbols which stand for the
appropriate two digit model code used in the model estimation and validation
subroutine. For example, the two digit model code for the S3i-Tyl regression model
is 52; hence, all estimation and validation output text files associated with this model
will receive a three character DOS extension of .M52.

Table 5.3  Listing of ASCII input text file WWD 7. NEW.

1.29964 2.20656 2.49076
8

29

36

79

97

100

117

139

159
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Table 5.4 lists the names, extensions, and contents of the 20 output text files
which can be generated by the program. Table 5.4 also indicates when and how
these files are created, and whether or not they are automatically written to the hard
disk.

NOTE: Because you may wish to fit many different models before making your
final model selection, none of the output text files created in the model
estimation and validation subroutines will be written to the hard disk
unless you specifically request the EMSMLR program to do so. If you
specifically request to save output files from more than one regression
model, you will need to use the .M&& extensions to determine which
output text files associate with each model.

NOTE: All output text files are written to the c:\emsurvey\phase2 subdirectory.

NOTE: During execution, the EMSMLR program will create a file called W. MTX.
This file contains the proximity matrix for the Moran spatial residual test,
and does not need to be printed out.

5.5 Tutorial Example

You should now try running EMSMLR using the supplied tutorial survey/sample
data set, WWDI.DAT. Initiate the EMSMLR program, move to the SMLR MODELING
menu and select option 1. Type “c:\emsurvey\data\wwdl .dat” at the path/file
prompt and “wwd1” at the survey code prompt. You should then see the following
information scroll across the screen:

File name: c:\emsurvey\data\wwdl.dat
Title: Westland Field 7

Survey Code: wwdl

Abbreviation of survey type: 7 6-5r/3d

Number of survey sites: 778

Number of calibration sites: 76

Number of sites with two samples per depth: 5

Number of sample depths: 3

Number of principal component scores: 3

After confirming that the correct input file has been read into the program,
answer no at the verify input data prompt and observe the summary input data
statistics. Note that the sample mean Ln salinity levels increase and the sample
variances decrease with depth, and that the salinity data from depths 2 and 3 appear



Table 5.4

8 Character
File Code

XXXXAPRS
XXXXRPRS
XXXXAPVE
XXXXRPVE

xxxxECOP'

XXXXMSMS
XXXXNOVA
XXXXPARA

XXXXUNIV

XXXXRESI
XXXXCORR
XXXXMSAT
XXXXSPDC
XXXXUSPD
XXXXUSPV
XXXXSDRP
xxxxFFIT!
xxxxTPRB'-2
xxxxHEAD'

XXXXFLUX
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EMSMLR output text file characteristics (four character survey code is
displayed as xxxx, 2 digit model code is displayed as &&).

DOS
Extension

MIS
MIS
.MIS
.MIS

M&&

M&&
M&&
M&&

M&&

M&&

M&&

M&&

M&&

M&&

M&&

M&&

M&&

M&&

M&&

M&&

Contents

absolute PRESS statistics
relative PRESS statistics
absolute APUE statistics
relative APUE statistics

observed and predicted log
salinity levels at all
calibration sites

summary model statistics
ANOUA tables
model parameter estimates

studentized residual summary
statistics and stem-leaf
plots
studentized residuals and
hat leverage scores
residual correlation matrix
Moran residual spatial auto-
correlation test statistics

summary prediction statistics

prediction statistics:
non-sampled sites

prediction variance statistics:
non-sampled sites

salinity diagnostic report
predicted log salinity levels
for all survey sites
prediction variance factors
for all survey sites
header information file

net flux report / monitoring
test results

Created in
Main Menu
Option #

N NDNDN

w

N

Automatically
written to
Hard Disk

yes
yes
yes
yes

yes

no
no
no

no

no
no
no
no
no
no
yes
yes
yes
yes

yes

Note’: the following output text files can not be printed from within the EMSMLR program:

XXXXECOP.M&&, XXXXFFIT.M&&, xxxXTPRB.M&&, and xxxxHEAD.M&&.

Note?: the prediction variance factors in the xxxxTPRB.M&& file can be converted into theoretical

prediction variance estimates by multiplying each factor with the appropriate regression model
MSE estimate.
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highly correlated (r > 0.97). The Ln salinity depth correlation plots can be viewed
by answering yes at the bivariate plot prompt. Also answer yes at the 1st PC plot
prompt, and note that the relationship between the 1st principal component and the
Ln salinity data appears to be nonlinear at each depth.

Upon returning to the main menu, select option 2. The program will inform you
that there are 50 models to analyze; type the [«] key to begin the analysis. (The
entire analysis may take a few minutes to complete, if you are running the EMSMLR
program on a 386/16 platform.) When the analysis is finished, a summary listing of
the ten best models in each score category will appear on the screen; note that the
S3i-Tyl model is ranked 1st in all four score categories. Before returning to the main
menu system, request a printout of the top 10 results.

Now choose option 3, and enter 52 at the two digit model code prompt. Note
that the program asks you to confirm your model code choice by printing to the
screen the abbreviated model parameter combination; S3i-Tyl. After answering yes,
EMSMLR will estimate this model and send you to the ESTIMATION / VALIDATION
menu. Selecting option 1 from this menu will send you to the MODEL ESTIMATION
submenu, where you can now view the various model estimation results.
Sequentially select options 1, 2, and 3 to display the model summary statistics,
ANOVA tables, and parameter estimates. Note that the model R? values increase and
the MSE estimates decrease with depth. In the ANOVA tables, note that all the
model F-test statistics are highly significant (at or below the 0.001 level) and that the
LOF test statistics are all non-significant. Finally, note that the majority of the depth
1 model parameter estimates do not appear to be significantly different from zero (as
determined by the t-test significance levels). However, nearly all the parameter
estimates within the depth 2 and depth 3 models appear to be statistically significant.

After returning to the ESTIMATION / VALIDATION menu, select option 2 to
move to the RESIDUAL DIAGNOSTICS submenu and use the various options from
within this submenu to view the residual diagnostics. Note that the univariate
statistics, influence diagnostics, and residual normality plots confirm that the model
residuals at each depth are approximately normally distributed and contain no outliers.
Additionally, the residual/location and residual/prediction plots are devoid of any
meaningful pattern, and the Moran residual test scores are all non-significant. Now
leave the RESIDUAL DIAGNOSTICS submenu and move into the PREDICTION
DIAGNOSTICS submenu. Use options 4 and 5 to view the observed versus predicted
Ln and back transformed salinity levels. Note that there appears to be some degree
of nonlinearity present in the observed/predicted relationship for the first depth.
However, the observed/predicted relationships in the second and third depths appear
linear and highly correlated.

At this point, you should be prepared to make a decision concerning the
adequacy of the S3i-Tyl models. Aside from the nonlinearity apparent in the low end
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predicted Ln salinity data within the first sample depth, the fitted regression models
appear to describe the sample data quite well. Note also that all the general
regression modeling assumptions are satisfied. Neither the LOF or Moran tests were
statistically significant, suggesting that no meaningful spatial autocorrelation could
be detected in the residuals. Additionally, all three residual data sets appeared
normally distributed with constant variance.

Based on these results, we choose to use the S3i-Tyl model for predicting the
spatial salinity distributions within the survey area at the 0.0-0.3, 0.3-0.6, and 0.6-
0.9 meter sample depths (Lesch et. al.,, 1995). Hence, at least for purposes of this
tutorial example, assume that the S3i-Tyl model is adequate. Move to the FILE
PRINT submenu and use options 1, 2, and 3 to print out the estimation and validation
results. After this, select option 4 and save all of these results to the hard disk.

NOTE: You may have noticed that the intercept and y parameter estimates
appear different from the estimates shown in Lesch et. al., 1995a,b.
This is because the physical X,y survey site locations were expressed on
a different scale during the original analysis.

NOTE: With regards to the final assessment of model adequacy, you will rarely
ever be fortunate enough to find a model which performs exceptionally
well across all sampling depths. For example, the S3i-Tyl model
describes the salinity data from the second and third sample depths quite
well, but appears to contain too many parameters within the first sample
depth (only the PC1 parameter appears statistically significant).
Additionally, the MSE estimate in the first depth is 0.22, which is much
higher than 0.10 (the approximate cutoff point for a “good” regression
equation). However, the pure error estimate in the first depth is 0.24,
which suggests that this near surface salinity variability is real (as
opposed to being caused by a poorly fitted model). Additionally, any
reduction in the number of model parameters will cause a significant
increase in prediction bias in the second and third depths (try fitting the
S1 -TO model to this data set).

After exiting back up to the SMLR MODELING menu, select option 4 to produce
the salinity diagnostic report. Make sure the active model is S3i-Tyl, select the 95%
confidence level, and use the default range cutoff levels (2, 4, 8, and 16). After
answering yes at the systematic grid prompt, EMSMLR will perform the diagnostic
calculations and display them to the screen. Note that the predicted field median
salinity levels increase with depth, as does the percent area of the field falling into the
higher range interval estimates. The mapping accuracy scores suggest that the
salinity maps at the deeper depths will be more accurate, and the spatial variation
indices suggest that the first depth is the most locally variable. (The short scale
variation accounts for 34% of the total variability in depth 1, as opposed to only
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about 14% in depths 2 and 3.) After viewing these results, answer yes at the print
results prompt; your printed output should look similar to the text output shown in
table 5.5.

Now return to the SMLR MODELING menu and select option 5. The program
will again ask you to confirm that the active model is correct; make sure that the
model is still S3i-Tyl. Type c:\emsurvey\data\wwdl .new at the path/file prompt,
choose the 95% confidence level, and observe the net flux calculations displayed to
the screen. Note that the average Ln salinity levels observed across the eight
validation sites are not statistically different from the model predicted average levels
at each depth. Once again, answer yes at the print results prompt; your printed
output should match the text output shown in table 5.6.

Upon returning to the SMLR MODELING menu, you can now use option 6 to
end the EMSMLR program. At this point, you may wish to view the output text files
residing in the c:\emsurvey\phase2 subdirectory. You should find that all the files
listed in table 5.4 now exist in this subdirectory (with either a .MIS or .M52
extension). Note that the WD1FFIT.M52 file will be used as the input file for the
SALTMAP program discussed in Section 6.
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Table 5.5  Salinity diagnostic report produced by the EMSMLR program (using
a S3i-Ty1 model and the WWD1.DAT input file).

Survey Type: [16-5r/3d) Survey Code: [wwdl]
Westland Field 1

Active Model: S3iTyl

I. POINT ESTIMATES

Depth Mean (LnECe) Var (LnECe) 95% Confidence Interval
1 1.509448 0.010475 [ 1.291343, 1.727552)
2 2.039121 0.003934 [ 1.905456, 2.172786]
3 2.298280 0.001996 [ 2.203073, 2.393487]

Depth Median ECe 95% Confidence Interval
1 4.52 [ 3.64, 5.63]

2 7.68 [ 6.72, 8.78}
3 9.96 [ 9.05, 10.95])

II. RANGE INTERVAL ESTIMATES

Depth Range 1 Range 2 Range 3 Range 4 Range 5
1 18.67% 24.45% 29.91% 20.52% 6.44%
2 7.06% 14.56% 24.10% 37.14% 17.15%
3 0.31% 7.75% 23.16% 49.23% 19.57%

Ranges: (1) [0.0,2.0] (2) [2.0,4.0] (3) [4.0,8.0)]
(4) [8.0,16.0] (5) [ > 16.0]

ITI. MAPPING CLASSIFICATION ACCURACY

Depth CA
1 47.00%
2 62.96%
3 72.35%

IV. SPATIAL VARIATION INDICES

Depth % Micro % Macro Micro CVv Macro CV
1 34.21% 65.79% 49.57% 72.51%
2 13.49% 86.51% 29.33% 83.51%

3 13.67% 86.33% 20.68% 55.01%
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Table 5.6  Net flux calculations produced by the EMSMLR program (using a
S3i-Tyl model and the WWD 7. NEW input file).

Survey Type: [16-5r/3d] Survey Code: (wwdl]
Westland Field 1

Active Model: S3iTyl

Source File <c:\emsurvey\data\wwdl ._new>
Number of Sites: 8

Depth Level: 3 [123]

Monitoring Sites: 29 36 79 97 100 117 139 159

I. MEAN MONITORING LEVELS: Test Statistics

Depth Observed Predicted Std.Dev. Observed t Prob > |t]

1.29964 1.55830 0.20166 -1.28265 0.21908
2 2.20656 2.14172 0.12359 0.52462 0.60752
3 2.49076 2.36971 0.08803 1.37506 0.18930

11. PERCENT FLUX IN FIELD AVERAGE ECe

Depth Net Flux 95% Confidence Interval Effect
1 -22.792% [ -49.762%, 18.659%] non-significant
2 6.699% [ -18.007%, 38.847%] non-significant

3 12.868% [ -6-438%, 36.157%] non-significant
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6.0 SALTMAP PROGRAM DOCUMENTATION

6.1 Program Description

SALTMAP is designed to display the salinity prediction map(s) for your survey
area, and produce high resolution output graphics which can be printed on a PCL3
compatible printer. SALTMAP can read as input either a xxxxFFIT. M&& output file
created by the EMSMLR program or an ASCII test file created by the user.

SALTMAP uses a modified version of an inverse distance squared spatial
estimation routine to produce high quality raster maps of the predicted salinity
distributions across your survey area. You can display and print either individual,
depth specific salinity maps, or composite maps (showing up to four depths
simultaneously). You can also interactively change both the number and magnitude
of salinity contour levels and the map boundaries from within the program.

6.2 Input/Output File Description

SAL TMAP has been designed to automatically accept all xxxxFFIT. M&& files
generated by the EMSMLR program. Do not modify these files in any manner if you
wish to import them into the SALTMAP program.

SALTMAP will also accept an ASCII text file containing observed and/or
predicted Ln salinity data, provided the file has the following column structure:

[I]: site ID [2]: x [3]: y [4 - 91. LnEC,LnEC, . . . LnEC,

The program will accept anywhere from one to six columns of Ln salinity data, hence
columns 5 through 9 are optional.

VAR NG When reading in a user specified ASCII text file, the site ID column
should contain integer values only, and all columns of salinity data must
be expressed in natural log units.

6.3 Program Operation

To initiate the SALTMAP program, move into the c:\emsurvey\phase2
subdirectory and type saltmap [<]. When the program appears, the screen will be
separated into two sections; a drawing section and a program command section. All
program options must be executed from the command section, using either the mouse
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or keystroke (hot-key) commands.

After invoking SALTMAP, you will see two main menu buttons within the
program command section of the screen; a File button and an Options button. You
can display either of these menus by using the mouse to click on the appropriate
button or by typing the underlined letter (hot-key) in the menu button title. You have
two options to choose from within the File menu; (1) you can read in an input file
using the Input File button, or (2) you can print a displayed map using the Print
button. You can choose from among five options from within the Options menu; (1)
you can display a single, depth specific salinity map at maximum resolution using the
Single button, (2) you can display a composition of multiple salinity maps at minimum
resolution using the Composite button, (3) you can change the map title and/or
sample depth labels using the Titles button, (4) you can change both the number and
magnitude of the salinity contour levels using the Legend button, and (5) you can
change the default map boundaries using the Boundary button. Note that you can
quit the SALTMAP program using either the Quit button or the Esc key (provided that
neither the File or Options menus are currently activated).

Each command section option is shown (and discussed) below:

1. FILE BUTTON 2. OPTIONS BUT-TON
1.a Input File 2.a Single
1.b  Print 2.b  Composite

2.c Tiltles

2.d Legend

2.e  Boundary
l.a Input File:

You should use this option to read in your input file. You must specify the path
and filename, whether or not the input file was generated by the EMSMLR program,
and the number of sample depths. Your input file can contain up to six sample
depths. However, if your input file contains more than four depths you will have to
choose four specific depths to work with. (SALTMAP can not process more than four
depths of salinity data at any one time.)

VARNI NG You must know beforehand how many depths there are in the input file.
If an erroneous number is entered into the SALTMAP program, then the
interpolation process will become corrupted and the displayed maps will
make no sense.

NOTE: If you are reading in a file residing within the c:\emsurvey\phase2
subdirectory, you do not have to specify the subdirectory path.
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1 .b Print

You can use this option to print the displayed map, provided you have a PCL3
compatible printer (such as a HP-Laserjet IlI, Ill, IV, or HP-Deskjet printer).

2.a  Single:

This option can be used to increase the interpolated resolution of a salinity map
at a particular depth. After choosing this option, you can select which depth to
enlarge by using the mouse or by typing 1, 2, 3, or 4 on the keyboard. A map of the
salinity distribution at the requested depth will then be displayed to the screen at
maximum resolution. After the map is displayed, you can switch to another depth by
selecting this option again and typing 1, 2, 3, or 4. If you read in an input file with
only one depth, SALTMAP will automatically display the salinity map at maximum
resolution. Note that once this option is invoked, the screen will automatically be
redrawn.

2. b Composite:

This option can be used to simultaneously display up to four salinity maps
(representing different depth levels) at the same time. Each salinity map within the
display area will be shown at minimum resolution. If you read in an input file with
multiple depths, SALTMAP will simultaneously display all the initial maps at minimum
resolution. Note that once this option is invoked, the screen will automatically be
redrawn.

2.c Titles:

You can use this option to change the default map title and/or the labels
associated with each sample depth. This option will also be automatically invoked
immediately after reading in a new input file. After typing in your new title and/or
labels, you can either redraw the screen immediately or postpone the redrawing
process in order to perform other options.

NOTE: The default title will be set to the name of your input file, and the default
legends will be set to 0.0-0.3 m, 0.3-0.6 m, 0.6-0.9 m, and 0.9-1 .2 m,
respectively.

2.d Legend:
You can use this option to change the number and/or magnitude of the contour

cutoff levels. The default number of contours is 5, and the default cutoff levels are
2, 4, 8, and 16 dS/m, respectively. You can vary the number of contours anywhere
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from 2 to 5, and that you must specify one less cutoff level than the number of
contours you request. For example, if you want to display your map using the four
contour levels [0,5], 15,101, [10,20], and [> 201, request 4 levels and specify the
bounds to be 5, 10, and 20.

After changing the number and/or magnitude of the contour levels, you can
either redraw the screen immediately or postpone the redrawing process in order to
perform other options.

2.e  Boundary:

You should use this option to change the minimum and maximum x and y
boundary coordinates of the map. Note that the default values will always be set
equal to the observed minimum and maximum X,y survey coordinates. After changing
these coordinates, you can either redraw the screen immediately or postpone the
redrawing process in order to perform other options.

NOTE: SALTMAP will print a warning message if the new map boundaries are
more than 25% larger than the default boundaries. However, you will
still be allowed to create the map, regardless of the new boundary size.

NOTE: SALTMAP will automatically “true-size” each map up to a 4:1 ratio. If
the ratio of the longest to shortest boundary exceeds 4: 1, then the map
boundary will default to a 4:1 ratio. Note also that all maps produced
by SALTMAP will have rectangular boundaries, regardless of the
underlying shape of the survey area.

6.4 Tutorial Example

In the following tutorial example, we have assumed that you are using a
mouse. If you do not have access to a mouse, all of the following point and click
operations should be replaced by the appropriate keystroke commands.

Initiate the SALTMAP program, click on the File button, and then click on the
Input File option button. Type wwdl1ffit. m52 at the filename prompt, y at the
EMSMLR prompt, 3 [«] at the sample depth prompt, and y at the verification prompt.
Next, type Westland Field 1: MLR Model S3i-Tyl [~] at the title prompt, strike the [«]
key three times to accept the default sample depth labels, and type y at the
verification prompt. At this point, the SALTMAP program will begin estimating the
spatial salinity maps at the 0.0-0.3 m, 0.3-0.6 m, and 0.6-0.9 m depths and writing
them to the display area of the screen.
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When this process is completed, click on the Options button, and then click on
the Legend option button. Type 4 [<] at the contour level prompt, and 4 [+], 8 [«],
and 16 [«] at the cutoff level prompts. Next, type y at the verification prompt and
n at the redraw screen prompt (the display area of the screen will now go blank).
Click on the Options button again, and then click on the Boundary option button.
Type 0.0 [«], 7.0 [<], 0.0 [<], and 7.5 [<] at the minimum & maximum X and y
prompts, respectively. (In this example we are using a scaled coordinate system of
1 map unit = 100 meters for the WWDL1 survey data. Hence, you just defined the
east/west and north/south boundaries to be 700 and 750 meters, respectively.)
Finally, type y at the verification prompt and y at the redraw screen prompt to once
again estimate and display all the salinity maps simultaneously.

When the redraw process has finished, click on the File button. If you have a
PCL3 compatible printer, you can now create a print out of the screen display area
by clicking on the Print option button. Your printed output should look like Figure
6.1.

Next, click on the Options button again, and then click on the Single option
button. Type 1 to draw a map of the salinity distribution at the 0.0-0.3 m sample
depth at maximum resolution. After the entire map is displayed to the screen, click
on the File button and then on the Print option button to produce a print out. Now
repeat this process for the 0.3-0.6 m and 0.6-0.9 m sample depths. When you are
finished, your printed output for the 0.0-0.3 m, 0.3-0.6 m, and 0.6-0.9 m depths
should look like Figures 6.2, 6.3, and 6.4, respectively.

A clear understanding of the apparent spatial salinity distribution within the
Westland field can be gained from Figure 6.1. Note that there appears to be a
buildup of salinity along the northern end of the field, along with an apparent
incursion of salinity moving from the northwest to southeast areas of the field. Note
also that this incursion appears to become more pronounced with depth, suggesting
that some sort of systematic change in one or more soil attributes are occurring
within the profile as one moves from the southern to northern ends of the survey
area. Within this field, it is quite possible that the salinity pattern was strongly
influenced by soil textural changes; the saturation percent tended to increase not only
with depth, but also spatially (in a pattern similar to the predicted salinity maps).
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7.0 ADVANCED TUTORIAL EXAMPLES

7.1  Appropriate Model Selection/Validation Methodology

In Section 1. 1 we pointed out some of the advantages that spatial regression
models had over other types of stochastic/dynamic modeling approaches. One of the
most important advantages not mentioned in Section 1.1 is the wealth of prediction
and residual diagnostics available to the analyst when estimating a regression model.
In any regression analysis, model validation is critical. The ultimate prediction
accuracy will depend on the appropriateness of the fitted model, which in turn
depends directly on the underlying validity of the modeling assumptions. There are
numerous tests and diagnostics designed to assess both the residual assumptions and
the degree of prediction accuracy and/or bias within a regression model; proper use
of these diagnostic tools can significantly increase the likelihood of estimating a
“good” (i.e., accurate and unbiased) model.

In Sections 5.3 and 5.5, a series of diagnostic tools designed for model
validation and selection purposes were introduced and briefly discussed. This section
is designed to give you additional experience in the efficient use of these diagnostic
tools, by leading you through the analysis of three additional survey data sets using
the EMSMLR program.

Before turning to the first tutorial example, a review of the different model
diagnostic tools available within the EMSMLR program is in order. Al EMSMLR model
diagnostics can be classified into one of two categories; (1) residual diagnostics, and
(2) assessment/prediction diagnostics. Residual diagnostics include all of the various
residual tests and plotting technigues designed to detect residual assumption
violations. On the other hand, the assessment/prediction diagnostics include all
model goodness-of-fit statistics, parameter tests, and the various prediction
assessment methods designed to appraise either the accuracy or reliability of the final
predictions.

In order to choose between two or more competing regression equations, the
following sequential validation/selection process should be employed. The residual
diagnostics should be examined first, and any models displaying obvious residual
assumption violations should be discarded. If more than one model passes all of the
critical residual tests, then the various assessment/prediction diagnostics should be
used to make the final model selection. To facilitate this validation/selection process,
you should compile a list of the more important diagnostic test results for each model.
An example of a “model comparison worksheet” which includes most of the useful
residual and assessment/prediction diagnostics is shown in table 7.1.
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Table 7.1 Example format for a model comparison worksheet.
Depth level: meters
Survey Code:
MODEL_:
1. LOF F
prob level:
2. MORAN
score:
3. Linearity of
Q-Q Plot:
4. Res Skew:
5. Balance:
6. Abs > 2.5:
7. R/P Plot:
8. R/X Plot:
9. R/Y Plot:
10. Para #:
11. R%
12. Adj R%:
13. MSE:
14. Model F
prob level:
15. Para |t|
prob levels: < .01: < .01: < .01: < .01: < .0l
.01-.05: .01-.05: .01-.05: .01-.05: .01-.05:
.05-. 10: .05- 10: .05- 10: .05- 10: .05-. 10:
> .10: > .10: > .10: > .10: > .10:
16. PRESS/n:
17. APVE:
18. Predicted
min - max:
19. Prd Var
50%:
75%:
100%:
20. Linearity of

Ln Plot:




81

There are references to 20 specific diagnostic items in the worksheet shown
in table 7.1. The first nine items represent residual tests and/or diagnostics, the next
six represent model goodness-of-fit statistics, and the last five represent prediction
diagnostics. Each of these items are explained in detail below.

1. LOF F prob level:

This space is for the probability level associated with the lack-of-fit F test. If
replicate sample data was acquired, the lack-of-fit F test results will be displayed in
the ANOVA tables (option 2 within the MODEL ESTIMATION submenu). A significant
F test implies model bias and short range residual autocorrelation, and represents a
critical residual assumption violation.

2. Moran Score:

This space is for the normalized Moran score (option 4 within the RESIDUAL
DIAGNOSTICS submenu). Note that the EMSMLR program prints a one-sided
probability level with this score; however, a two-sided test may sometimes be more
appropriate. (Significant negative spatial autocorrelation will occur if the residuals
display a cyclic pattern across the field; such a residual pattern is usually indicative
of a pronounced, repetitive oscillation in the soil texture.) For a two sided test,
scores above 1.645, 1.960, and 2.575 indicate positive residual autocorrelation at
the 0.10, 0.05, and 0.01 significance levels; likewise, scores which fall below -1.645,
-1.960, and -2.575 indicate negative autocorrelation at the same significance levels.
Significant Moran scores (above 1.96 or below -1.96) represent a critical residual
assumption violation.

3. Linearity of Q-Q Plot:

The assessment of the residual normality assumption can be done using a
number of diagnostic tools; however, the most intuitive tool is probably the normality
guantile-quantile plot (option 7 within the RESIDUAL DIAGNOSTICS submenu). Note
that a linear pattern in the Q-Q plot indicates normally distributed residuals, while a
nonlinear and/or fractured pattern is indicative of non-normality. A qualitative grade
of the residual linearity within the Q-Q plot (i.e., good, ok, fair, poor) should be
written in this space. When a fair or poor grade is recorded, the reason should also
be listed (e.g., curvature, outlier, etc.).

4, Residual Skewness:

This space is for recording the residual skewness estimate (option 1 within the
RESIDUAL DIAGNOSTICS submenu). Theoretically, the skewness should be equal to
0. In small sample sizes (n=20), a skewness estimate between -0.5 to 0.5 can be
assumed to be reasonable. Estimates below -1 .O or above 1 .O usually indicate
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negative or positive skewness, respectively.
5. Residual Balance:

This space is for recording the estimated residual balance, which is another
way of gauging the symmetry of the residual distribution. The residual balance is
defined as follows:

r100 / |rO]| if r100 > |rO|
[rO] / r100 if r100 < |rO|

balance

where r0 and r100 represent the 0 and 100 residual percentile values (option 1 within
the RESIDUAL DIAGNOSTICS submenu). Skewness and/or outliers may be present
if the balance exceeds 1.5.

6. Abs > 2.5:

If the absolute value of any residuals (negative or positive) exceed 2.5, answer
yes in this space and write down the value, otherwise answer no. (Individual
studentized residual values can be shown using option 2 within the RESIDUAL
DIAGNOSTICS submenu.) A residual with an absolute value exceeding 2.5 is
considered a marginal outlier; a residual exceeding 3.5 should be considered a critical
outlier.

7. R/P Plot:

A plot of the residuals against the model predicted Ln salinity levels can be
shown using option 5 within the RESIDUAL DIAGNOSTICS submenu. This space is
for a qualitative description of the R/P scatter plot (i.e., random, nonrandom). Note
that the R/P plot should appear random; any obvious pattern suggests the presence
of prediction model bias.

8. & .9 R/X and R/Y Plots:

Plots of the residuals against the x and y sample location coordinates can be
shown using option 6 within the RESIDUAL DIAGNOSTICS submenu. Spaces 8 and
9 are for qualitative descriptions of these R/X and R/Y scatter plots, which should
also appear random. Any obvious linear or quadratic relationships between the
residuals and the spatial location coordinates suggests that the model is missing one
or more important trend surface parameters.

10. Para #:

The number of model parameters (not including the intercept) should be written
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down in this space. All else being equal, a model containing only a few parameters
is preferable to a model containing many parameters.

11. R%

This space is for recording the coefficient of determination (R?), which
represents the proportion of variation in the response data that is explained by the
model.

12.  Adj R%

This space is for recording the adjusted coefficient of determination, which
represents an R?value adjusted for the total number of model parameters. A large
difference between the R%and the adjusted R? values usually implies that the model
is “over-fit” (i.e., it contains too many meaningless parameters).

13. MSE

This space is for the recording the model mean square error estimate. A small
MSE estimate usually implies good prediction accuracy.

NOTE: ltems 10, 11, 12, and 13 can be displayed using option 1 within the
MODEL ESTIMATION submenu.

14.  Model F prob level:

This space if for the probability level associated with the overall model F test
(option 2 within the MODEL ESTIMATION submenu). A significant F test implies that
at least one parameter within the model (besides the intercept) is different from O.

15. Para [t| prob levels:

This space is for recording the number of model parameters which are
significant at the following probability levels: < 0.01, 0.01 to 0.05, 0.05 to 0.10,
and > 0.10 (option 3 within the MODEL ESTIMATION submenu). In a good model,
the majority of model parameters should be significant at or below the 0.1 level.

16. PRESS/n:

This space is for recording the jack-knifed estimate of the MSE, which is simply
the PRESS statistic divided by the calibration sample size (option 1 within the
PREDICTION DIAGNOSTICS submenu). A good model should have a small PRESS/n
estimate, and the difference between the MSE and PRESS/n estimates should also be
small.
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17. APVE:

This space is for recording the average prediction variance estimate; a
theoretical estimate of the average prediction variance associated with a non-sampled
survey site (option 1 within the PREDICTION DIAGNOSTICS submenu). A good
model should produce a small APVE.

18. Predicted min - max:

The predicted 0 and 100 salinity percentile levels should be written in this
space (option 2 within the PREDICTION DIAGNOSTICS submenu). A biased model
will tend to produce minimum or maximum salinity predictions which are significantly
smaller or larger than the predicted levels in an unbiased model.

19. Prd Var:

These spaces are for recording the 50%, 75%, and 100% percentile prediction
variance estimates (option 3 within the PREDICTION DIAGNOSTICS submenu). Large
variance estimates indicate unreliable predictions.

20.  Linearity of Ln Plot:

Another assessment of prediction reliability can be done using the Ln prediction
plot (option 4 within the PREDICTION DIAGNOSTICS submenu). A nonlinear pattern
in this plot indicates possible prediction bias in the model. A qualitative grade of the
prediction linearity within the Ln prediction plot (i.e., good, ok, fair, poor) should be
written in this space.

When soil samples are acquired at k sampling depths, there will be k individual
regression models to validate (and hence it will be necessary to fill out k worksheets).
There will often be times when you find that the parameter combination within a
model does not perform well across all the sample depths. In such a scenario, it is
a good idea to choose a parameter combination which performs satisfactory across
most sampling depths, as opposed to a parameter combination which performs very
well in some depths and very poorly in others.

7.2  Analysis of the H2SA Survey Data

The survey/salinity data associated with the 1989 H2SA project resides in the
c:\emsurvey\data subdirectory, and is contained in a file called H2SA.DAT. Initiate
the EMSMLR program and use option 1 to read in this data set. You should find that
the data contains 206 survey sites, 20 calibration sites sampled from one depth only
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(0.0-0.3 m), and that no replication cores were acquired at any calibration sites. Note
also that the sample Ln salinity data appear well correlated with the 1st principal
component scores.

Now use the Model identification option to compute the APVE and PRESS
scores for all 50 models. Request a printout of the top 10 results after they have
been displayed to the screen. The absolute PRESS rankings for the five best models
should be S3-Tx2yl (0.10310), S3-Tyl (0.104391, S3-Tx2y2 (0.10585), S3-Ty2
(0.106091, and S2-Tx2yl (0.11531). Likewise, the absolute APVE rankings for the
five best models should be S2-Tx2yl (0.106471, S3-Tx2yl (0.10722), S1-Tx2yl
(0.11144), S3-Tyl1 (0.11204), and S3-Ty2 (0.11584). Note that there are four
models with high (top five) rankings in each category: S3-Tyl, S3-Ty2, S2-Tx2yl,
and S3-Tx2y1l.

At this point you should use option 3 in the SMLR MODELING menu to estimate
and validate each one of the four models mentioned above. For comparative
purposes only, we also recommend that you estimate and validate the SI-TO model.
As you validate each model, keep track of the model diagnostic results using a
worksheet like the one shown in table 7.1.

When you are finished, your results should look like the worksheet data
displayed in table 7.2. A comparison of the residual diagnostic results in table 7.2
suggests that the S3-Tx2yl and S2-Tx2yl models are the least subject to any
residual assumption violations. Note that the Moran score in the SI-TO model is
significant below a 0.05 level. Furthermore, there is obvious linear and/or quadratic
drift apparent in both the R/X and R/Y plots; hence this model should be discarded.
There is a fair amount of skewness apparent in both the S3-Ty2 and S3-Tyl residuals
(both Q-Q plots appear curvelinear, and both residual distributions have poor
skewness and balance estimates). While this residual skewness does not absolutely
disqualify either model, it does tend to discredit them. On the other hand, the
residual diagnostics from both the S3-Tx2yl and S2-Tx2yl models appear
reasonable. The only two noticeable differences between the S3-Tx2yl and S2-
Tx2yl models are (1) the Moran scores suggest that the S3-Tx2y1l residuals may be
slightly less negatively correlated, and (2) there is a small fracture in the S3-Tx2yl
residual Q-Q plot, suggesting a mild violation in the residual normality assumption.

The residual diagnostic results suggest that we discard the SI-TO model
entirely and give preferential consideration to the S3-Tx2yl or S2-Tx2yl models,
provided the remaining statistics due not clearly favor either the S3-Ty2 or S3-Tyl
models. None of the information in the goodness-of-fit statistics or the prediction
diagnostics suggest that the S3-Tyl or S3-Ty2 models are superior, hence we will
limit our final choice to either the S3-Tx2yl or S2-Tx2yl model. Note that the S3-
Tx2yl model has slightly higher R? and adjusted R? statistics, and lower MSE and
PRESS/n estimates. On the other hand, the S2-Tx2yl model has a higher percentage
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Table 7.2 Detailed comparison of five different prediction models for HS2A
survey data.
Depth level: 0.0-0.3 meters
Survey Code: 20-Or/1d (N=206)
MODEL: S3-Tx2y1 S2-Tx2y1 S3-Ty2 S3-Ty1 S$1-TO
LOF F
prob level: no reps no reps no reps no reps no reps
MORAN
score: -0.915 -1.398 -0.086 0.266 1.997
Linearity of
Q-Q Plot: fair good fair poor good
(fracture) {curvature) (curvature)
Res Skew: -0.520 0.202 -1.099 -1.100 -0.367
Balance: 1.067 1.113 1.942 2.270 1.152
Abs > 2.5: no no no no no
R/P Plot: random random random random random
R/X Plot: random random random random drift (quadratic)
R/Y Plot: random random random random drift (linear)
Para #: 6 5 5 4 1
RZ: 0.933 0.920 0.916 0.907 0.761
Adj R%: 0.903 0.892 0.886 0.883 0.747
MSE: 0.0708 0.0787 0.0829 0.0852 0.1836
Model F
prob level: < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Para |t|
prob levels: < .01: 1 <.01: 4 < .01:2 < .01: 2 < .01: 1
.01-.05: 3 .01-.05: 0 .01-.05: 0 .01-.05: 0 .01-.05: 0
.05-.10: O .05-.10: 0 .05-.10: O .05-.10: 1 .05-.10: 0
> .10: 2 > .10: 1 > .10: 3 > .10: 1 > .10: 0
PRESS/n: 0.1031 0.1152 0.1061 0.1044 0.1927
APVE: 0.1072 0.1065 0.1158 0.1120 0.2064
Predicted
min - max: 0.17,49.8 0.14,50.9 0.20,42.1 0.25,49.2 0.19, 37.1
Prd Var
50%: 0.0971 0.1020 0.1079 0.1064 0.1981
75%: 0.1140 0.1147 0.1257 0.1166 0.2099
100%: 0.2779 0.1696 0.2664 0.2172 0.3144
Linearity of
Ln Plot: good good good good fair
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of individually significant parameter estimates and less high end prediction variability.
The APVE are nearly identical, and there is good linearity in both Ln prediction plots.
Taken together, these results do not suggest a clearly preferable model.

In practice, either of these two models could have been used to construct the
final Ln salinity predictions. Personally, we prefer the S3-Tx2y1l model, primarily
because it retains all three principal component scores in the regression equation.
However, both models yield nearly identical field average Ln salinity and range
interval estimates, and produce very similar prediction maps. If you have not already
done so, you should verify this by producing a salinity diagnostic report using each
model now (your results should match the estimates shown in table 7.3). Note that
the “true values” displayed in table 7.3 are based on all N = 206 observed salinity
samples.

Figures 7.1 and 7.2 display the predicted field salinity maps created by the
SALTMAP program using the S3-Tx2yl and S2-Tx2yl models, respectively. (You
can recreate these maps yourself by importing the HS2AFFIT.M46 and
HS2AFFIT.M26 output text files into the SALTMAP program.) Like the prediction
estimates shown in table 7.3, these two maps are nearly equivalent. The only
noticeable difference in the prediction maps occurs in the southeast corner of the field
(lower right hand corner of the printed map), and this difference is minor.

Table 7.3  Predicted HS2A field average Ln salinity and range interval estimates
from the S3-Tx2yl and S2-Tx2yl models. True HS2A values also
shown (N =206).

MLR Model MLR Model True
S3-Tx2y 1 S2-Tx2yl Values
Ln salinity
estimate: 0.957 0.967 1.017
95% CI: 10.832, 1.0821 10.837, 1.097]
Range Interval
Estimates
0.0 - 2.0: 43.0% 42 .7% 42.5%
2.0 - 4.0: 24.8% 23.6% 23.1%
4.0 - 8.0: 17.9% 19.0% 16.1%
8.0 - 16. 0O 9.2% 10.0% 13.4%

> 16.0: 5.1% 4.7% 4.9%
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Figure 7.3 displays the observed salinity map, based on all N = 206 sample
sites. This map was generated by the SALTMAP program using the HS2A.LOG input
data file (located in the c:\emsurvey\data subdirectory). Note that both predicted
maps appear quite similar to the true map. Along with table 7.3, these results
confirm that a spatial regression model can produce highly reliable predictions, when
the model is properly estimated.

Figure 7.4 displays the predicted field salinity map created by the SALTMAP
program using the SI-TO model. We have included this figure for comparative
purposes only, to demonstrate what can happen when an improper model is used to
make the final predictions. Recall that this model not only failed a number of residual
assumptions, but it's goodness-of-fit and prediction diagnostic results also appeared
inferior in comparison to the remaining models. The bias in this model is clearly
evident in the prediction map. The salinity levels tend to be under predicted in the
northern end of the field and over predicted in the southeast quadrant.

7.3 Analysis of the CK44 Survey Data

The survey/salinity data associated with the 1993 CK44 project resides in the
c:\emsurvey\data subdirectory, and is contained in a file called CK44.DAT. Initiate
the EMSMLR program and use option 1 to read in this data set. You should find that
the data contains 139 survey sites, 16 calibration sites, and 4 replication sites.
Additionally, note that samples were acquired at four depths at each site (0.0-0.3,
0.3-0.6, 0.6-0.9, and 0.9-1 .2 m). Use the bivariate Ln salinity plots to display the
sample salinity correlation plots (for various sampling depths); note that the only
meaningful correlation seems to occur between adjacent sampling depths. Note also
that the Ln salinity data appears well correlated with the 1st principal component
score in the first two sample depths only.

Now use the Model Identification option to compute the APVE and PRESS
scores for all 50 models. Note that the top two scores in each category are
associated with either the S3-TO or S3i-TO models. These scores suggests that the
S3-TO and S3i-TO models should be estimated and validated first. As before, use a
worksheet like the one shown in table 7.1 to keep track of the model diagnostic
results. (Note that you will need four worksheets; i.e., one for each sampling depth).

When you are finished, your results should look similar to the first two columns
of worksheet data displayed in tables 7.3a - 7.3d. For both models, you should have
noticed a number of potential problems revealed by the various residual diagnostics.
These problems include (I) fractures, curvature, and/or outliers in the residual Q-Q
plots, (2) residual drift in 0.0-0.3 m, 0.3-0.6 m, and 0.9-1 .2 m R/X and/or R/Y plots,
and (3) a significant Moran test score (0.9-1 .2 m depth, S3i-TO model).
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Figure 7.4 Printout of the predicted HS2A field salinity map for 0.0-0.3 m depth;
input file is HS2AFFIT.M10. Note that the S1-TO model used to
predict the spatial salinity pattern is clearly biased.
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The significant Moran test score and the residual drift apparent in the R/X and
R/Y plots suggest that linear trend surface parameters should be included in the fitted
models. Hence, you should now try fitting both the S3-Tx1lyl and S3i-Tx1yl models
to this survey data. Note that the residual diagnostics for the S3-Tx1lyl model are
shown in the third columns of tables 7.3a-7.3d; these results suggest that the
majority of problems apparent in the earlier diagnostics disappear once the trend
surface parameters are incorporated into the S3-TO model.

Due to space considerations, we have not shown the results for the S3i-Tx1lyl
model in tables 7.3a-7.3d. However, if you have not already done so, you should
estimate and validate the S3i-Txlyl model now. Note that once the trend surface
parameters are included into the equations, the interaction parameter estimates no
longer appear to be highly significant (judging by the t-test scores). The prediction
accuracy in the 0.0-0.3 m sample depth does appear to be better in this model
(compared to the S3-Txlyl model); however, the residual Q-Q plot and skewness
factor are considerably worse. Aside from the 0.0-0.3 m depth, the APVE, PRESS/n,
and MSE estimates in both models are very similar. Most importantly, the final
salinity estimates and predicted spatial maps are nearly equivalent.

Given these results, we will limit the remainder of this discussion to a
comparison of the S3-TO and S3-Tx1lyl models only. Note that the assessment and
prediction diagnostics displayed in columns one and three of tables 7.3a-7.3d suggest
that the addition of the trend surface parameters has not resulted in an increase in the
prediction accuracy at any of the sampling depths. On the other hand, these
additional parameters do not seem to seriously degrade the predictive capabilities at
any of the depths, and the S3-Tx1lyl model appears to be significantly less biased
(judging by the residual diagnostics). Based on these results, we would recommend
using the S3-Tx1lyl model for salinity prediction purposes.

The trend surface parameter effect on the final salinity predictions can be best
judged by producing salinity diagnostic reports and spatial prediction maps using both
models. Table 7.4 displays the field median and range interval estimates produced
by both models; note that there are only small differences in these estimates.
However, the predictions differences between these two models show up more
clearly when you compare the spatial salinity maps shown in Figures 7.5 and 7.6.
The dominant effect of the trend surface parameters in the S3-Tx1lyl model appears
to be a north/south bias adjustment to the predicted salinity distributions in the 0.6-
0.9 m and 0.9-1 .2 m depths. This is primarily why we would recommend using the
S3-Tx1lyl model (in comparison to the S3-TO model): it appears to correct for some
subtle prediction bias in the lower sample depths without significantly degrading the
prediction accuracy in the near surface depths.

For the record, you may be wondering why we chose to display the predicted
salinity maps using non-standard contour cutoff points. If you have not already done
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Table 7.3a Detailed comparison of three different prediction models for CK44 survey

data at the 0.0-0.3 meter sampling depth.

MODEL:

LOF F

prob level:

MORAN
score:

Linearity of
Q-Q Plot:

Res Skew:
Balance:
Abs > 2.5:
R/P Plot:
R/X Plot:
R/Y Plot:

Para #:
R2:

Adj RZ:
MSE:
Model F

prob level:

Para |t|

prob levels:

PRESS/n:
APVE:
Predicted

min - max:

Prd Var
50%:
75%:
100%:

Linearity of
Ln Plot:

Depth level: 0.0-0.3 meters
Survey Code: 16-4r/4d (N=139)

S3-T0

nonsignificant
-0.820
fair (fracture)

-0.384
1.160
no
random
drift (linear/mild)
random

3
0.853
0.826
0.0735

< 0.001
< .01:1
.01-.05: 1

.05-.10: 0
> .10: 1

0.0907
0.0941
2.64, 443
0.0891
0.0959
0.1715

good

S3i-TO

nonsignificant
-0.092
fair (curvature)

-0.798
1.612
no
random
drift (linear/mild)
random

4
0.872
0.838
0.0683

< 0.001
< .01:1
.01-.05: 1

.05-.10: O
> .10: 2

0.0854
0.0932
2.88, 50.4
0.0847
0.0984
0.1925

good

S3-Tx1y1

nonsignificant
-0.620
ok

-0.415
1.228
no
random
random
random

5
0.861
0.811
0.0798

< 0.001
< .01:1
.01-.05: 1

.06-.10: O
> .10: 3

0.1191
0.1165
2.76, 46.4
0.1081
0.1241
0.2435

good
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Table 7.3b Detailed comparison of three different prediction models for CK44
survey data at the 0.3-0.6 meter sampling depth.

Depth level: 0.3-0.6 meters
Survey Code: 16-4r/4d (N=139)

MODEL: S3-T0 S3i-TO S3-Tx1y1
LOF F
prob level: nonsignificant nonsignificant nonsignificant
MORAN
score: 1.017 0.892 1.086
Linearity of
Q-Q Plot: fair fair fair
(fracture & outlier) (fracture & outlier] (fracture)
Res Skew: -0.520 -0.864 -0.491
Balance: 1.278 1.572 1.316
Abs > 2.5: yes (-2.50) ves (-2.68) yes (-2.63)
R/P Plot: random random random
R/X Plot: linear drift linear drift random
or outlier or outlier
R/Y Plot: linear drift linear drift random
or outlier or outlier
Para #: 3 4 5
R2: 0.827 0.838 0.865
Adj RZ: 0.794 0.794 0.817
MSE: 0.0341 0.0341 0.0303
Model F
prob level: < 0.001 < 0.001 < 0.001
Para |t|
prob levels: < .01:1 < .01:1 < .01:1
.01-.05: 1 .01-.05: 1 .01-.05: 0
.05-.10: 0 .05-.10: 0 .05-.10: 1
> .10: 1 > .10: 2 > .10: 3
PRESS/n: 0.0415 0.0441 0.0454
APVE: 0.0436 0.0465 0.0442
Predicted
min - max: 5.52, 29.0 4.97, 28.1 5.81, 24.8
Prd Var
50%: 0.0413 0.0422 0.0410
75%: 0.0445 0.0491 0.0471
100%: 0.0796 0.0960 0.0924
Linearity of
Ln Plot: good good good
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Table 7.3¢c Detailed comparison of three different prediction models for CK44

survey data at the 0.6-0.9 meter sampling depth.

Depth level: 0.6-0.9 meters
Survey Code: 16-4r/4d (N=139)

MODEL: S3-T0 S3i-TO S3-Tx1v1
LOF F
prob level: nonsignificant nonsignificant nonsignificant
MORAN
score: -1.348 -1.126 -1.252
Linearity of
Q-Q Plot: fair (curvature) fair (curvature) fair (curvature)
Res Skew: 0.062 0.237 -0.201
Balance: 1.363 1.384 1.125
Abs > 2.5: no no no
R/P Plot: random random random
R/X Plot: random random random
R/Y Plot: random random random
Para #: 3 4 5
R%: 0.404 0.448 0.419
Adj RZ% 0.292 0.301 0.211
MSE: 0.0474 0.0468 0.0528
Model F
prob level: < 0.05 0.050 < 0.15
Para |t|
prob levels: <.01:0 < .01: 0 < .01:0
.01-.05: 1 .01-.05: 0 .01-.05: 0
.05-.10: 1 .05-.10: 2 .05-.10: 1
> .10: 1 > .10: 2 > .10: 4
PRESS/n: 0.0594 0.0601 0.0761
APVE: 0.0606 0.0638 0.0771
Predicted
min - max: 5.82, 15.1 6.21, 16.8 5.68, 14.5
Prd Var
50%: 0.0574 0.0579 0.0715
75%: 0.0618 0.0673 0.0821
100%: 0.1105 0.1316 0.1611
Linearity of
Ln Plot: fair (weak) fair (weak) fair (weak)
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Table 7.3d Detailed comparison of three different prediction models for CK44

MODEL:

LOF F
prob level:
MORAN
score:
Linearity of
Q-Q Plot:

Res Skew:
Balance:
Abs > 2.5:
R/P Plot:
R/X Plot:
R/Y Plot:

Para #:

RZ

Adj R%:

MSE:

Model F
prob level:

Para |t|
prob levels:

PRESS/n:
APVE:
Predicted
min - max:
Prd Var
50%:
75%:
100%:
Linearity of
Ln Plot:

Depth level:

0.9-1.2 meters

Survey Code: 16-4r/4d (N=139)

S3-TO

nonsignificant
1.797
fair (fracture)

-0.288
1.086
no
random
random
drift (linear)

3
0.383
0.268
0.0499

< 0.05
< .01: 0
.01-.05: 0

.05-.10: 2
> .10: 0

0.0639
0.0639
4.08, 11.0
0.0605
0.0651
0.1165

fair (weak)

S3i-TO

nonsignificant

2.091
ok

-0.152
1.131
no
random
random
drift flinear)

4
0.471
0.329
0.0457

< 0.05
< .01:0
.01-.05: 1

.05-.10: 1
> .10: 2

0.0605
0.0624
3.18, 10.1
0.0566
0.0658
0.1288

fair (weak)

survey data at the 0.9-1.2 meter sampling depth.

S3-Tx1y1

nonsignificant
1.471
ok

0.426
1.443
no
random
random
random

5
0.511
0.337
0.0452

0.051
< .01: 0
.01-.05: 0

.05-.10: 3
> .10: 2

0.0701
0.0660
4.11,13.2
0.0613
0.0703
0.1379

fair (weak)



98

so, initiate the SALTMAP program and read in either the CK44FFIT.M40 or
CK44FFIT.M43 data files. Once the 0.6-0.9 m and 0.9-1.2 m prediction maps are
displayed, you will see that nearly all the meaningful pattern is lost when the standard
cutoff points (2,4,8,16) are used. When this happens, you will need to experiment
with different cutoff points in order to create more visually interpretable maps (unless
your chosen cutoff points are agronomically meaningful, in which case they shouldn't
be changed regardless of what the predicted maps look like). If you do decide to use
a new set of cutoff points, remember that you also need to produce a second salinity
diagnostic report which reflects these new cutoff values, if you wish to compute a
matching set of range interval estimates and classification accuracy scores.

Table 7.4  Predicted CK44 field average Ln salinity and range interval estimates
from the S3-TO and S3-Tx1y1 models.

Model: S3-TO

Ln Salinity 0.0-0.3m 0.3-0.6 m 0.6-0.9 m 0.9-1.2 m

Estimate

w/ 95% ClI 2.395 2.498 2.265 1.869
2.26,2.53 2.41,2.59 2.16,2.37 1.76, 1.98

Range Interval

Estimates 0.0-0.3 m 0.3-0.6 m 0.6-0.9m 0.9-1.2m

0.0-6.0: 19.7% 4.9% 5.5% 42.3%

6.0 - 9.0: 19.9% 18.8% 35.7% 43.6%

9.0 - 13.5: 21.3% 35.4% 45.8% 12.5%

> 13.5: 39.1% 40.9% 13.0% 1.6%
Model: S3-Tx1y1

Ln Salinity 0.0-0.3 m 0.3-0.6 m 0.6-0.9 m 0.9-1.2m

Estimate

w/ 95% ClI 2.401 2.495 2.261 1.867
2.26,2.54 2.41,258 2.14,2.38 1.76,1.97

Range Interval

Estimates 0.0-0.3 m 0.3-0.6 m 0.6-0.9 m 0.9-1.2m

0.0 - 6.0: 19.8% 4.9% 7.1% 43.9%

6.0 - 9.0: 19.2% 18.0% 35.1% 40.4%

9.0 - 13.5: 21.6% 37.2% 43.4% 13.2%

> 13.5: 39.4% 39.9% 14.4% 2.5%
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Figure 7.5 Composite printout of the predicted CK44 field salinity maps for the
0.0-0.3 m, 0.3-0.6 m, 0.6-0.9 m, and 0.9-1.2 m depths; input file is
CK44FFIT.M40.
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Figure 7.6 Composite printout of the predicted CK44 field salinity maps for the
0.0-0.3 m, 0.3-0.6 m, 0.6-0.9 m, and 0.9-1.2 m depths; input file is
CK44FFIT.M43.
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7.4  Analysis of the AZ09 Survey Data

The ESAP software programs documented in this manual have been found to
work well across a wide range of typical field conditions. However, there are a
limited number of fundamental assumptions which must be satisfied in order to
generate reliable soil salinity predictions. Probably the most important assumption
which must be satisfied in practice is that the EM survey readings have not been
grossly confounded by significant changes in the soil texture. The AZQ09 project
represents an example of a survey where this assumption was clearly inappropriate;
e.g., the EM survey readings were severely corrupted by chaotic soil texture
variations. This data will now be used to demonstrate how such signal/texture
confounding can be detected during the model validation analysis.

The above mentioned Arizona survey/salinity data resides in the
c:\emsurvey\data subdirectory in a file entitted AZ09.DAT. Upon reading this file into
the EMSMLR program, you should find that there are 114 survey sites, 25 calibration
sites, 5 replication sites, and that the salinity data has been collected at 4 sample
depths (0.0-0.3, 0.3-0.6, 0.6-0.9, and 0.9-1 .2 m). Note also that the Ln salinity data
appears to be rather poorly correlated with the 1st principal component score across
all four sampling depths.

When you use the Model identification option to compute the APVE and PRESS
scores for all 50 models, you should find that the S2i-TO model appears to be the
“best”. The S2i-TO model estimation and validation results for all four sampling
depths are shown in table 7.5. You should immediately note the following two types
of residual violations; (1) the LOF F test probability levels are significant at all
sampling depths, and (2) there appear to be at least two outliers present in this data
(one at the 0.0-0.3 m depth, and another at the 0.6-0.9 m depth). You should also
note that the model R? values are very low across all sampling depths and the MSE
estimates are quite high in the lower two depths.

The results shown in table 7.5 confirm that the S2i-TO regression equations are
highly unreliable and clearly biased. Hence, these equations should not be used for
spatial salinity prediction purposes.

When there are obvious outliers present in a data set (as is the case here), it
is worthwhile to remove the questionable data points and refit the model. You can
perform such an analysis by reading in the AZ0923.DAT data file (note that the
sample data associated with sites #7 and #88 have been removed from this file).
Invoking the Model Identification option on this data produces a different set of APVE
and PRESS scores; the “best” model now appears to be the S2i-Tyl parameter
combination. The R? levels, MSE estimates, LOF F test probability levels, and Moran
scores for this model are shown in table 7.6 for all 4 sampling depths. Note that the
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Table 7.5

sampling depths; input file is AZO9.DAT.

DEPTH:

LOF F
prob level:
MORAN
score:
Linearity of
Q-Q Plot:

Res Skew:
Balance:
Abs > 2.5:
R/P Plot:
R/X Plot:
R/Y Plot:

Para #:

RZ:

Adj RZ%

MSE:

Model F
prob level:

Para |t|

prob levels:

PRESS/n:
APVE:
Predicted
min - max:
Prd Var
50%:
75%:
100%:
Linearity of
Ln Plot:

0.6-0.9 m

0.0076
-1.312

poor
foutlier)
-0.778
1.564
yes (-3.0)
outlier
outlier
outlier

3
0.530
0.475
0.3055

< 0.001
< .01:1
.01-.05: 1

.05-.10: 0
> .10: 1

0.3516
0.3509
0.45, 6.19
0.3292
0.3439
0.8277

poor

Model: S2i-TO
Survey Code: 25-5r/4d (N=114)
0.0-0.3 m 0.3-0.6 m
0.0376 0.0212
-0.088 -0.299
poor ok
foutlier)

-1.322 -0.533
2.351 1.406
yes (-3.4) yes (-2.6)
outlier random
outlier random
outlier random

3 3

0.502 0.485
0.444 0.426
0.0714 0.1664

< 0.001 < 0.001
< .01:2 < .01:1
.01-.05: 0 .01-.05: 1
.05-.10: 0 .05-.10: O
> .10: 1 > .10: 1
0.0788 0.1965
0.0821 0.1912
0.50, 1.87 0.54, 3.62
0.0770 0.1793
0.0804 0.1873
0.1936 0.4509
fair fair
foutlier) {weak)

foutliers)

Detailed listing of the S2i-TO model summary statistics across all four

0.0057
-1.284
ok

-0.384
1.474
no
random
random
random

3
0.602
0.556
0.3014

< 0.001

< .01:1
.01-.05: 0
.05-.10: O
> .10: 2

0.3399
0.3462
0.46, 6.67
0.3248
0.3393
0.8166

poor
{outliers)
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Table 7.6 Pertinent summary statistics from the S2i-Tyl model, using the
AZ0923.DA T input file.

LOF F test Moran
Deoth R2 MSE prob level score
0.0-0.3 m 0.580 0.0423 0.1103 -0.878
0.3-0.6 m 0.622 0.1075 0.0538 -2.379
0.6-0.9 m 0.699 0.1997 0.0194 -0.089
0.9-1 2m 0.738 0.2054 0.0134 -1.220

spatial bias in the predictions is still present (judging by the LOF F test probability
levels). Indeed, the Moran scores have become even more negative, suggesting a
possible cyclic residual autocorrelation effect induced from strong textural variations.

In this survey data set, there are actually no physical reasons to justify the
removal of the two sites producing the earlier outliers. However, temporarily
removing such data points and refitting the regression models can reveal important
characteristics about the data set. In this case, we have seen that it is not the
outliers that corrupt the model fitting process so much as the short scale spatial
autocorrelation inherent in the residuals. In all likelihood, there is nothing “wrong”
with the salinity data from sites #7 and #88. Rather, it is simply the extreme textural
variation corrupting the EM signal data (and hence invalidating the regression
modeling assumptions) which causes the data from these sites to appear so unusual.

Figure 7.7 displays depth-distribution schematic plots of the soil SP
measurements associated with the HS2A, WWDI, CK44, and AZ09 -calibration
samples. These soil SP measurements have been converted into rough texture
measurements using the following SP/texture scale:

[ SP < 25%: sand
[25% < SP < 37.5%: sandy loam
[ 37.5% c SP < 50%]: loam
[ 50% < SP < 75%]: loamy clay
[ SP > 75%]: clay

Note that these texture classes are defined using the dotted vertical lines in Figure
7.7.
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Figure 7.7 Soil SP depth-distribution schematic plots for the sample data from
the HS2A, WWD1, CK44, and AZ09 surveys.
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A general rule of thumb is that if the majority of SP data covers more than one
soil texture class, then the EM signal data may become confounded by texture
variations. Furthermore, this confounding can become quite serious if the field EC,
levels are relatively low. From Figure 7.7, it is apparent that the soil textural variation
in the AZ09 survey data is far too great to successfully employ a regression modeling
approach (especially when we consider that 85% of the sample soil salinity data are
less than 4.0 dS/m). This may not always hold true; sometimes the soil salinity and
soil texture levels change in a closely related manner, as is the case in the WWD1
survey data. However, chaotic textural variations can cause serious regression model
bias, and thus we generally don’t recommend using this prediction approach under
such conditions.

There are other, more sophisticated spatial and/or geostatistical prediction
techniques which could be used to model the AZ09.DAT survey data. However,
none of these more advanced techniques will be of much practical use unless the
calibration salinity sample size is also significantly increased. The interested reader
should refer to the references in Lesch, et. al., 1995a for a partial listing of these
alternative techniques.
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